A miniature microphone array based on interaural time difference (ITD) is designed. This array contains four microphones with certain arrangement and aims for two-dimensional (azimuth and elevation) direction-of-arrival (DOA) estimation in the whole three-dimensional space. The array can be small because it uses a coupling algorithm that magnifies the time delay between the signals received by every two microphones. The coupling algorithm is built according to a pairwise-coupled multidimensional mechanical model inspired by the ears of the tiny parasitoid fly Ormia ochracea. It was verified that the time-delay magnification can be independent of the incident angle when the parameters in the model satisfy specific relationships. This paper further investigates the multidimensional coupled system and advocates to realize the magnification mechanism in algorithm, where the physical parameters can change according to sound frequency to ensure the time-delay magnification. Moreover, the arrangement of microphones is specially designed to help the array to achieve similar measuring accuracy for all directions in the three-dimensional space. Corresponding signal process procedures are also provided. Simulations that use such an array to estimate the azimuth and elevation angles of sound source are performed via general cross-correlation (GCC) method. Results verify the feasibility of the microphone array and show that the accuracy of the estimation increases after the signals are processed by the coupled system.

References

1.
Tiete
,
J.
,
Domínguez
,
F.
,
Silva
,
B.
,
Segers
,
L.
,
Steenhaut
,
K.
, and
Touhafi
,
A.
,
2014
, “
SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization
,”
Sensors
,
14
(
2
), pp.
1918
1949
.
2.
Nguyen
,
V. A.
,
Zhao
,
S.
,
Vu
,
T. D.
,
Jones
,
D. L.
, and
Do
,
M. N.
,
2013
, “
Spatialized Audio Multiparty Teleconferencing With Commodity Miniature Microphone Array
,”
21st ACM International Conference on Multimedia
, Barcelona, Spain, Oct. 21–25, pp.
553
556
.
3.
Zhao
,
S.
,
Ahmed
,
S.
,
Liang
,
Y.
,
Rupnow
,
K.
,
Chen
,
D.
, and
Jones
,
D. L.
,
2012
, “
A Real-Time 3D Sound Localization System With Miniature Microphone Array for Virtual Reality
,”
Seventh IEEE Conference on Industrial Electronics and Applications
(
ICIEA
), Singapore, July 18–20, pp.
1853
1857
.
4.
Popper
,
A. N.
,
Fay
,
R. R.
, and
Popper
,
A. N.
,
2005
,
Sound Source Localization
,
Springer
,
New York
.
5.
Akcakaya
,
M.
,
Muravchik
,
C. H.
, and
Nehorai
,
A.
,
2011
, “
Biologically Inspired Coupled Antenna Array for Direction-of-Arrival Estimation
,”
IEEE Trans. Signal Process.
,
59
(
10
), pp.
4795
4808
.
6.
Mason
,
A. C.
,
Oshinsky
,
M. L.
, and
Hoy
,
R. R.
,
2001
, “
Hyperacute Directional Hearing in a Microscale Auditory System
,”
Nature
,
410
(
6829
), pp.
686
690
.
7.
Robert
,
D.
,
Miles
,
R. N.
, and
Hoy
,
R. R.
,
1996
, “
Directional Hearing by Mechanical Coupling in the Parasitoid Fly Ormia ochracea
,”
J. Comp. Physiol., A
,
179
(
1
), pp.
29
44
.
8.
Bicen
,
B.
,
Jolly
,
S.
,
Jeelani
,
K.
,
Garcia
,
C. T.
,
Hall
,
N. A.
,
Degertekin
,
F. L.
,
Su
,
Q.
,
Cui
,
W.
, and
Miles
,
R. N.
,
2009
, “
Integrated Optical Displacement Detection and Electrostatic Actuation for Directional Optical Microphones With Micromachined Biomimetic Diaphragms
,”
IEEE Sens. J.
,
9
(
12
), pp.
1933
1941
.
9.
Miles
,
R. N.
,
Cui
,
W.
,
Su
,
Q. T.
, and
Homentcovschi
,
D.
,
2015
, “
A MEMS Low-Noise Sound Pressure Gradient Microphone With Capacitive Sensing
,”
J. Microelectromech. Syst.
,
24
(
1
), pp.
241
248
.
10.
Ishfaque
,
A.
, and
Kim
,
B.
,
2016
, “
Analytical Modeling of Squeeze Air Film Damping of Biomimetic MEMS Directional Microphone
,”
J. Sound Vib.
,
375
, pp.
422
435
.
11.
Kuntzman
,
M. L.
, and
Hall
,
N. A.
,
2014
, “
Sound Source Localization Inspired by the Ears of the Ormia Ochracea
,”
Appl. Phys. Lett.
,
105
(
3
), p.
033701
.
12.
Lisiewski
,
A. P.
,
Liu
,
H. J.
,
Yu
,
M.
,
Currano
,
L.
, and
Gee
,
D.
,
2011
, “
Fly-Ear Inspired Micro-Sensor for Sound Source Localization in Two Dimensions
,”
J. Acoust. Soc. Am.
,
129
(
5
), pp.
EL166
EL171
.
13.
Zhang
,
Y.
,
Zhu
,
X.
,
Yang
,
M.
,
Ta
,
N.
, and
Rao
,
Z.
,
2014
, “
Biologically Inspired Acoustic Localization System for Direction of Arrival Estimation
,”
21st International Congress on Sound and Vibration
(
ICSV
), Beijing, July 13–17, pp.
1071
1077
.https://pdfs.semanticscholar.org/3663/13e090e7cbe648f8b44079811e55088aecd6.pdf
14.
Masoumi
,
A. R.
, and
Behdad
,
N.
,
2013
, “
Architecture, Design, and Nonlinear Optimization of Three-Element Biomimetic Antenna Arrays
,”
IEEE Antennas Wireless Propag. Lett.
,
12
, pp.
1416
1419
.
15.
Yang
,
M.
,
Zhu
,
X.
,
Zhang
,
Y.
,
Ta
,
N.
, and
Rao
,
Z.
,
2016
, “
Parameter Study of Time-Delay Magnification in a Biologically Inspired, Mechanically Coupled Acoustic Sensor Array
,”
J. Acoust. Soc. Am.
,
140
(
5
), pp.
3854
3861
.
16.
Miles
,
R. N.
,
Su
,
Q.
,
Cui
,
W.
,
Shetye
,
M.
,
Degertekin
,
F. L.
,
Bicen
,
B.
,
Garcia
,
C.
,
Jones
,
S.
, and
Hall
,
N.
,
2009
, “
A Low-Noise Differential Microphone Inspired by the Ears of the Parasitoid Fly Ormia Ochracea
,”
J. Acoust. Soc. Am.
,
125
(
4
), pp.
2013
2026
.
17.
Xu
,
H.
,
Xu
,
X.
,
Jia
,
H.
,
Guan
,
L.
, and
Bao
,
M.
,
2015
, “
A Biomimetic Coupled Circuit Based Microphone Array for Sound Source Localization
,”
J. Acoust. Soc. Am.
,
138
(
3
), pp.
EL270
EL275
.
18.
Miles
,
R. N.
,
2016
, “
Acoustically Coupled Microphone Arrays
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
064503
.
19.
Zhang
,
Y.
,
Yang
,
M.
,
Zhu
,
X.
,
Ta
,
N.
, and
Rao
,
Z.
,
2018
, “
A Biologically Inspired Coupled Microphone Array for Sound Source Bearing Estimation
,”
ASME J. Vib. Acoust.
,
140
(
1
), p. 011019.
20.
Zhang
,
Y.
,
Yang
,
M.
,
Zhu
,
X.
,
Liu
,
L.
,
Ta
,
N.
, and
Rao
,
Z.
,
2017
, “
Study and Mimicking the Time Delay Magnification of the Fly Ear
,”
24th International Congress on Sound and Vibration (ICSV 2017)
, London, July 23–27, Paper No. 65.
21.
Miles
,
R. N.
,
Robert
,
D.
, and
Hoy
,
R. R.
,
1995
, “
Mechanically Coupled Ears for Directional Hearing in the Parasitoid Fly Ormia Ochracea
,”
J. Acoust. Soc. Am.
,
98
(
6
), pp.
3059
3070
.
22.
Rao
,
S. S.
, and
Yap
,
F. F.
,
2011
,
Mechanical Vibrations
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.