This paper presents a mathematical model used to obtain the vertical vibration of a ballasted railway track when a wheel is passing at a certain speed over a fixed location of the rail. The aim of this simulation is to compare calculated root-mean-square (RMS) values of the vertical vibration velocity with measured RMS values. This comparison is the basis for a proposed time domain methodology for detecting potential wheel flats or any other singular defect on the wheel rolling bands of metropolitan trains. In order to reach this goal, a wheel–rail contact model is proposed; this model is described by the track vertical impulse response and the vertical impulse response of the wheel with the primary suspension, both linked through a Hertz nonlinear stiffness. To solve the model for obtaining the wheel–rail contact force, a double convolution method is applied. Several kinds of wheel flats are analyzed, from theoretical round edged wheel flats to different real wheel profile irregularities. Afterward, the vertical vibration velocity at a fixed point on the rail is obtained using a variable kernel convolution method. Running different simulations for different wheel flats, a study of the vertical vibration attenuation along the rail is carried out. Finally, it is proceeded to obtain the temporary evolution of the RMS value for the rail vertical vibration velocity in order to be used as a reference for detecting wheel flats or any other defect. This last aspect will be presented in more detail in a second paper.

References

1.
Wu
,
T. X.
, and
Thompson
,
D. J.
,
2002
, “
A Hybrid Model for the Noise Generation Due to Railway Wheel Flats
,”
J. Sound Vib.
,
251
(
1
), pp.
115
139
.
2.
Mazilu
,
T.
,
Dumitriu
,
M.
,
Tudorache
,
C.
, and
Sebesan
,
M.
,
2011
, “
Using the Green's Functions Method to Study Wheelset/Ballasted Track Vertical Interaction
,”
Math. Comput. Modell.
,
54
(
1–2
), pp.
261
279
.
3.
Hertz
,
H.
,
1895
,
Gesamelte Werke Band I: Shriften Vermishen Inhalts
,
P.
Lenard
, ed., Vol.
1
,
Leipzig
,
Barth, Germany
, p.
155
.
4.
Yan
,
W.
, and
Fischer
,
F. D.
,
2000
, “
Applicability of the Hertz Contact Theory to Rail-Wheel Contact Problems
,”
Arch. Appl. Mech.
,
70
(
4
), pp.
255
268
.
5.
Fernández-Díaz
,
E.
,
2000
, “
Study of the Detection and Analysis of Vibrations Produced by a Railway Bogie
,” Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain.
6.
Remington
,
P.
, and
Webb
,
J.
,
1996
, “
Estimation of Wheel/Rail Interaction Forces in the Contact Area Due to Roughness
,”
J. Sound Vib.
,
193
(
1
), pp.
83
102
.
7.
Carter
,
F. W.
,
1926
, “
On the Action of a Locomotive Driving Wheel
,”
Proc. R. Soc. Ser. A
,
113
(
760
), pp.
151
157
.
8.
Johnson
,
K. L.
, and
Vermeulen
,
P. J.
,
1964
, “
Contact of Non-Spherical Bodies Transmitting Tangential Forces
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
338
340
.
9.
Kalker
,
J. J.
,
1967
, “
On the Rolling Contact for Two Elastic Bodies in the Presence of Dry Friction
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
10.
Kalker
,
J. J.
,
1983
, “
A Fast Algorithm for the Simplified Theory of Rolling Contact
,”
Veh. Syst. Dyn.
,
11
(
1
), pp.
1
13
.
11.
Wu
,
T. X.
, and
Thompson
,
D. J.
,
2000
, “
Theoretical Investigation of Wheel/Rail Non-Linear Interaction Due to Roughness Excitation
,”
Veh. Syst. Dyn.
,
34
(
4
), pp.
261
282
.
12.
Cardona
,
S.
,
Martínez
,
J.
,
Fernàndez-Díaz
,
E.
, and
De los Santos
,
M. A.
,
1998
, “
Determination of the Vibrations Produced by the Profile Irregularities of the Wheels of a Metropolitan Railway Bogie in a Rail Location
,”
Anales de Ingeniería Mecánica (in Spanish)
,
12
(
4
), pp.
454
459
.
13.
Clark
,
R. A.
,
Dean
,
P. A.
,
Elkins
,
J. A.
, and
Newton
,
S. G.
,
1982
, “
An Investigation Into the Dynamic Effects of Railway Vehicles Running on Corrugated Rails
,”
J. Mech. Eng. Sci.
,
24
(
2
), pp.
65
76
.
14.
Zougari
,
A.
,
Martínez
,
J.
, and
Cardona
,
S.
,
2016
, “
Numerical Models of Railway Tracks for Obtaining Frequency Response. Comparison With Analytical Results and Experimental Measurements
,”
J. Vibroeng.
,
18
(
2
), pp.
1104
1114
.https://jvejournals.com/article/16546
15.
Tran
,
L. H.
,
Hoang
,
T.
,
Duhamel
,
D.
,
Foret
,
G.
,
Messad
,
S.
, and
Loaec
,
A.
,
2018
, “
A Fast Analytic Method to Calculate the Dynamic Response of Railways Sleepers
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011005
.
16.
Zougari
,
A.
,
2014
, “
Study of the Vibrational Behaviour of Different Tracks Using Finite Element Model
,” Ph.D. thesis (in Spanish), Universitat Politècnica de Catalunya, Barcelona, Spain.
17.
Martínez
,
J.
,
De los Santos
,
M.
, and
Cardona
,
S.
,
1995
, “
A Convolution Method to Determine the Dynamic Response in a Railway Track Submitted to a Moving Vertical Excitation
,”
Mach. Vib.
,
4
(1), pp.
142
146
.
18.
Otero
,
J.
,
Martínez
,
J.
,
De los Santos
,
M. A.
, and
Cardona
,
S.
,
2012
, “
A Mathematical Model to Study Railway Track Dynamics for the Prediction of Vibration Levels Generated by Rail Vehicles
,”
J. Rail. Rapid Transit.
,
226
(
1
), pp.
62
71
.
19.
Thompson
,
D.
,
1993
, “
Wheel-Rail Noise Generation. Part III: Rail Vibration
,”
J. Sound Vib.
,
161
(
3
), pp.
421
446
.
20.
Grassie
,
S. L.
,
Gregory
,
R. W.
,
Harrison
,
D.
, and
Johnson
,
K. L.
,
1982
, “
The Dynamic Response of Railway Track to High Frequency Vertical Excitation
,”
J. Mech. Eng. Sci.
,
24
(
2
), pp.
77
90
.
21.
Iwnicki
,
S.
,
2006
,
Handbook of Railway Vehicle Dynamics
,
CRC Press
,
Boca Raton, FL
, pp.
279
325
.
22.
Mazilu
,
T.
,
2017
, “
Interaction Between Moving Tandem Wheels and an Infinite Rail With Periodic Supports—Green's Matrices of the Track Method in Stationary Reference Frame
,”
J. Sound Vib.
,
401
, pp.
233
254
.
23.
Thompson
,
D.
,
Wu
,
T. X.
, and
Armstrong
,
T.
,
2003
, “
Wheel/Rail Rolling Noise—The Effects of Non-Linearities in the Contact Zone
,”
Tenth International Congress on Sound and Vibration
, Stockholm, Sweden, July 7–10.https://www.southampton.ac.uk/assets/imported/transforms/content-block/UsefulDownloads_Download/223F9A5BFBAD4A0885B7790738D08585/icsv10_240.pdf
24.
Kawaguchi
,
K.
,
Seko
,
N.
,
Nagai
,
T.
, and
Ookita
,
Y.
,
2006
, “
Development of a Wheel Slip Prevention (WSP) System for Freight Trains
,”
Seventh World Congress on Railway Research
,
Montréal, QC, Canada
,
June 4–8
, p. 77.
25.
Newton
,
S. G.
, and
Clark
,
R. A.
,
1979
, “
An Investigation Into the Dynamic Effects on the Track of Wheel Flats on Railway Vehicles
,”
J. Mech. Eng. Sci.
,
21
(
4
), pp.
287
297
.
26.
Dings
,
P. C.
, and
Dittrich
,
M. G.
,
1996
, “
Roughness on Dutch Railway Wheels and Rails
,”
J. Sound Vib.
,
193
(
1
), pp.
103
112
.
27.
Squicciarini
,
G.
,
Toward
,
M. G.
,
Thompson
,
D. J.
, and
Jones
,
C. J. C.
,
2013
, “
Statistical Description of Wheel Roughness
,”
11th International Workshop on Railway Noise
,
Uddevalla, Sweden
,
Sept. 9–13
.
28.
Tomov
,
M.
,
Kuzinovski
,
M.
, and
Trajcevski
,
N.
,
2010
, “
Function on Gaussian and 2RC Filters to Determine the Roughness Profile in Real Non-Periodic and Periodic Surface
,”
14th International Research/Expert Conference
,
Mediterranean Cruise
,
Sept. 11–18
.
29.
Yuan
,
Y. B.
,
Vorburger
,
Y. B.
,
Song
,
J. F.
, and
Renegar
,
T. B.
,
2000
, “
A Simplified Realization for the Gaussian Filter in Surface Metrology
,”
Tenth International Colloquium on Surfaces
,
Chemnitz, Germany
, pp.
133
144
.
30.
Amick
,
H.
,
1999
, “
A Frequency-Dependency Soil Propagation Model
,”
Conference on Current Developments in Vibration Control for Optomechanical Systems
,
Denver, CO
,
July 20–23
.
31.
Telford
,
W. M.
,
Geldart
,
L. P.
, and
Sheriff
,
R. E.
,
1990
,
Applied Geophysics, Seismic Methods
,
Cambridge University Press
,
Cambridge, UK
, p.
770
.
32.
Florez
,
E.
,
2009
, “
Identification and Characterization of Wheel Flats of a Train Using the Signal Analysis of the Rail Vertical Vibration Generated by the Wheel-Rail Contact
,” Ph.D. thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain (in Spanish).
33.
Colaço
,
A.
,
Costa
,
P. A.
,
Amado-Mendes
,
P.
, and
Godinho
,
L.
,
2017
, “
Prediction of Vibrations and Reradiated Noise Due to Railway Traffic: A Comprehensive Hybrid Model Based on a Finite Element Method and Method of Fundamental Solutions Approach
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061009
.
You do not currently have access to this content.