This paper offers two interlinked contributions in the field of vibration absorption. The first involves an active tuning of an absorber for spectral and spatial variations. The second contribution is a set of generalized design guidelines for such absorber operations. “Spectral” tuning handles time-varying excitation frequencies, while “spatial” tuning treats the real-time variations in the desired location of suppression. Both objectives, however, must be achieved using active control and without physically altering the system components to ensure practicality. Spatial tuning is inspired by the concept of “noncollocated vibration absorption,” for which the absorber location is different from the point of suppression. This concept is relatively under-developed in the literature, mainly because it requires the use of part of the primary structure (PS) as the extended absorber—a delicate operation. Within this investigation, we employ the delayed resonator (DR)-based absorber, a hybrid concept with passive and active elements, to satisfy both tuning objectives. The presence of active control in the absorber necessitates an intriguing stability investigation of a time-delayed dynamics. For this subtask, we follow the well-established methods of frequency sweeping and D-subdivision. Example cases are also presented to corroborate our findings.

References

References
1.
Karnopp
,
D.
,
Crosby
,
M.
, and
Harwood
,
R. A.
,
1974
, “
Vibration Control Using Semi-Active Force Generators
,”
J. Eng. Ind.
,
96
(
2
), pp.
619
626
.
2.
Valasek
,
M.
,
Novak
,
M.
,
Sika
,
Z.
, and
Vaculin
,
O.
,
1997
, “
Extended Ground-Hook—New Concept of Semi-Active Control of Truck's Suspension
,”
Veh. Syst. Dyn.
,
27
, pp.
289
303
.
3.
Griffin
,
S.
,
Gussy
,
J.
,
Lane
,
S. A.
,
Henderson
,
B. K.
, and
Sciulli
,
D.
,
2002
, “
Virtual Skyhook Vibration Isolation System
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
63
67
.
4.
Muthalif
,
A. G.
, and
Langley
,
R. S.
,
2012
, “
Active Control of High-Frequency Vibration: Optimisation Using the Hybrid Modelling Method
,”
J. Sound Vib.
,
331
(
13
), pp.
2969
2983
.
5.
Aoki
,
T.
,
Yamashita
,
Y.
, and
Tsubakino
,
D.
,
2016
, “
Vibration Suppression for Mass-Spring-Damper Systems With a Tuned Mass Damper Using Interconnection and Damping Assignment Passivity-Based Control
,”
Int. J. Robust Nonlinear Control
,
26
(
2
), pp.
235
251
.
6.
Cha
,
P. D.
,
2005
, “
Enforcing Nodes at Required Locations in a Harmonically Excited Structure Using Simple Oscillators
,”
J. Sound Vib.
,
279
(
3–5
), pp.
799
816
.
7.
Cha
,
P. D.
, and
Zhou
,
X.
,
2006
, “
Imposing Points of Zero Displacements and Zero Slopes along Any Linear Structure During Harmonic Excitations
,”
J. Sound Vib.
,
297
(
1–2
), pp.
55
71
.
8.
Daley
,
S.
, and
Wang
,
J.
,
2008
, “
A Geometric Approach to the Design of Remotely Located Vibration Control Systems
,”
J. Sound Vib.
,
318
(
4–5
), pp.
702
714
.
9.
Wang
,
J.
, and
Daley
,
S.
,
2010
, “
Broad Band Controller Design for Remote Vibration Using a Geometric Approach
,”
J. Sound Vib.
,
3229
(
19
), pp.
3888
3897
.
10.
Kim
,
S. M.
, and
Oh
,
J. E.
,
2013
, “
A Modal Filter Approach to Non-Collocated Vibration Control of Structures
,”
J. Sound Vib.
,
332
(
9
), pp.
2207
2221
.
11.
Kim
,
S. M.
, and
Brennan
,
M. J.
,
2013
, “
Active Vibration Control Using Delayed Resonant Feedback
,”
Smart Mater. Struct.
,
22
(
9
), p. 095013.http://iopscience.iop.org/article/10.1088/0964-1726/22/9/095013/meta
12.
Olgac
,
N.
, and
Holm-Hansen
,
B. T.
,
1994
, “
A Novel Active Vibration Absorption Technique: Delayed Resonator
,”
J. Sound Vib.
,
176
(
1
), pp.
93
104
.
13.
Olgac
,
N.
,
Elmali
,
H.
,
Hosek
,
M.
, and
Renzulli
,
M.
,
1997
, “
Active Vibration Control of Distributed Systems Using Delayed Resonator With Acceleration Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(
3
), pp.
380
389
.
14.
Jalili
,
N.
, and
Olgac
,
N.
,
1999
, “
Multiple Delayed Resonator Vibration Absorbers for Multiple-Degree-of-Freedom Mechanical Structures
,”
J. Sound Vib.
,
223
(
4
), pp.
567
585
.
15.
Hamdi
,
M.
, and
Belhaq
,
M.
,
2018
, “
Energy Harvesting in a Hybrid Piezoelectric-Electromagnetic Harvester With Time Delay
,”
Recent Trends in Applied Nonlinear Mechanics and Physics
, Vol.
299
, Springer, Cham, Switzerland, pp.
69
83
.
16.
Henry
,
R. J.
,
Masoud
,
Z. N.
,
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2001
, “
Cargo Pendulation Reduction on Ship-Mounted Cranes Via Boom-Luff Angle Actuation
,”
J. Vib. Control
,
7
(
8
), pp.
1253
1264
.
17.
Bisgaard
,
M.
,
la Cour-Harbo
,
A.
, and
Bendtsen
,
J. D.
,
2010
, “
Adaptive Control System for Autonomous Helicopter Slung Load Operations
,”
Control Eng. Pract.
,
18
(
7
), pp.
800
811
.
18.
Huang
,
X. W.
, and
Zhao
,
Y. Y.
,
2013
, “
The Effect of Delayed Feedback Control on Lateral Semi-Active Suspension System for High-Speed Train
,”
Adv. Mater. Res.
,
753–755
, pp.
1795
1799
.
19.
Eris
,
O.
,
Ergenc
,
A. F.
, and
Kurtulan
,
S.
,
2014
, “
Use of Non-Identical Multiple Delayed Resonators in Active Suspension Systems of Railway Vehicles
,”
IEEE
International Conference on Control System, Computing and Engineering
, Penang, Malaysia, Nov. 28–30, pp.
588
591
.
20.
Gao
,
Q.
,
Kammer
,
A.
,
Zalluhoglu
,
U.
, and
Olgac
,
N.
,
2015
, “
Combination of Sign Inverting and Delay Scheduling Control Concepts for Multiple-Delay Dynamics
,”
Syst. Control Lett.
,
77
, pp.
55
62
.
21.
Eris
,
O.
, and
Ergenc
,
A. F.
,
2016
, “
Delay Scheduling for Delayed Resonator Applications
,”
IFAC-PapersOnLine
,
49
(
10
), pp.
77
81
.
22.
Sipahi
,
R.
, and
Olgac
,
N.
,
2006
, “
A Unique Methodology or the Stability Robustness of Multiple Time Delay Systems
,”
System Control Lett.
,
55
(
10
), pp.
819
825
.
23.
Gryazina
,
E. N.
,
Polyak
,
B. T.
, and
Tremba
,
A. A.
,
2008
, “
The State of the Art of the D-Composition Method
,”
Autom. Remote Control
,
69
(
12
), pp.
1991
2026
.
24.
El'sgol'ts
,
L. E.
, and
Norkin
,
S. B.
,
1973
,
Introduction to the Theory and Application of Differential Equations With Deviating Arguments
,
Academic Press
,
New York
.
25.
Vyhlidal
,
T.
, and
Zitek
,
P.
,
2009
, “
Mapping Based Algorithm for Large-Scale Computation of Quasi-Polynomial Zeros
,”
IEEE Trans. Autom. Control
,
54
(
1
), pp.
171
177
.
26.
Kammer
,
A. S.
, and
Olgac
,
N.
,
2016
, “
Delayed-Feedback Vibration Absorbers to Enhance Energy Harvesting
,”
J. Sound Vib.
,
363
, pp.
54
67
.
You do not currently have access to this content.