This work presents an efficient way to calculate the added mass matrix, which allows solving for natural frequencies and modes of solids vibrating in an inviscid and infinite fluid. The finite element method (FEM) is used to compute the vibration spectrum of a dry structure, then the boundary element method (BEM) is applied to compute the pressure modes needed to determine the added mass matrix that represents the fluid. The BEM requires numerical integration which results in a large computational cost. In this work, a reduction of the computational cost was achieved by computing the values of the pressure modes with the required numerical integration using a coarse BEM mesh, and then, interpolation was used to compute the pressure modes at the nodes of a fine FEM mesh. The added mass matrix was then computed and added to the original mass matrix of the generalized eigenvalue problem to determine the wetted natural frequencies. Computational cost was minimized using a reduced eigenvalue problem of size equal to the requested number of natural frequencies. The results show that the error of the natural frequencies using the procedure in this work is between 2% and 5% with 87% reduction of the computational time. The motivation of this work is to study the vibration of marine mammals' ear bones.

References

References
1.
Lin
,
Z.
, and
Liao
,
S.
,
2011
, “
Calculation of Added Mass Coefficients of 3D Complicated Underwater Bodies by FMBEM
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
1
), pp.
187
194
.
2.
Ghassemi
,
H.
, and
Yari
,
E.
,
2011
, “
The Added Mass Coefficient Computation of Sphere, Ellipsoid and Marine Propellers Using Boundary Element Method
,”
Pol. Maritime Res.
,
68
(
1
), pp.
17
26
.
3.
Geers
,
T. L.
,
1978
, “
Doubly Asymptotic Approximations for Transient Motions of Submerged Structures
,”
J. Acoust. Soc. Am.
,
64
(
5
), pp.
1500
1508
.
4.
Deruntz
,
J. A.
, and
Geers
,
T. L.
,
1978
, “
Added Mass Computation by the Boundary Integral Method
,”
Int. J. Numer. Methods Eng.
,
12
(
3
), pp.
531
48
.
5.
Antoniadis
,
I.
, and
Kanarachos
,
A.
,
1987
, “
Decoupling Procedure for the Modal Analysis of Structures in Contact With Incompressible Fluids
,”
Commun. Appl. Numer. Methods
,
3
(
6
), pp.
507
517
.
6.
Sandberg
,
G.
,
1995
, “
A New Strategy for Solving Fluid-Structure Problems
,”
Int. J. Numer. Methods Eng.
,
38
(
3
), pp.
357
370
.
7.
Ugurlu
,
B.
, and
Ergin
,
A.
,
2006
, “
A Hidroelasticity Method for Vibrating Structures Containing and/or Submerged in Flowing Water
,”
J. Sound Vib.
,
290
(
3–5
), pp.
572
596
.
8.
Rajasankar
,
J.
,
Iyer
,
N. R.
, and
Rao
,
V. S. R. A.
,
1993
, “
A New 3-D Finite Element Model to Evaluate Added Mass for Analysis of Fluid-Structure Interaction Problems
,”
Int. J. Numer. Methods Eng.
,
36
(
6
), pp.
997
1012
.
9.
Kwak
,
M. K.
,
1996
, “
Hydroelastic Vibration of Rectangular Plates
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
110
115
.
10.
Everstine
,
G. C.
,
1991
, “
Prediction of Low Frequency Vibrational Frequencies of Submerged Structures
,”
ASME J. Vib. Acoust.
,
113
(
2
), pp.
187
191
.
11.
Fu
,
Y.
, and
Price
,
W. G.
,
1987
, “
Interactions Between a Partially or Totally Immersed Vibrating Cantilever Plate and the Surrounding Fluid
,”
J. Sound Vib.
,
118
(
3
), pp.
495
513
.
12.
Wilken
,
M.
,
Of
,
G.
,
Cabos
,
C.
, and
Steinbach
,
O.
,
2009
, “
Efficient Calculation of the Effect of Water on Ship Vibration
,”
Analysis and Design of Marine Structures
,
S.
Guedes
and
P. K.
Das
, eds.,
Taylor & Francis
,
London
, pp.
93
101
.
13.
Jensen
,
F. B.
,
Kupperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
,
1994
,
Computational Ocean Acoustics
,
American Institute of Physics
,
New York
.
14.
Monterrubio
,
L. E.
, and
Krysl
,
P.
,
2012
, “
Efficient Calculation of the Added Mass Matrix for Vibration Analysis of Submerged Structures
,”
11th International Conference on Computational Structures Technology
, Stirlingshire, UK, Sept. 4–7, Paper No. 212 2012.
15.
Pozrikidis
,
C.
,
2002
,
A Practical Guide to Boundary Element Methods With the Software Library BEMLIB
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
16.
Pozrikidis
,
C.
,
1998
,
Numerical Computation in Engineering and Science
,
Oxford University Press
,
New York
.
17.
Pina
,
H. L. G.
,
Fernandes
,
J. L. M.
, and
Brebbia
,
C. A.
,
1981
, “
Some Numerical Integration Formulae Over Triangles and Squares With a 1/r Singularity
,”
Appl. Math. Modell.
,
5
(
3
), pp.
209
11
.
18.
Bathe
,
K. J.
,
1982
,
Finite Element Procedures in Engineering Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
19.
Sundqvist
,
J.
,
1983
, “
An Application of ADINA to the Solution of Fluid-Structure Interaction Problems
,”
Comput. Struct.
,
17
(
5–6
), pp.
793
807
.
20.
Lindholm
,
U. S.
,
Kana
,
D. D.
,
Chu
,
W. H.
, and
Abramson
,
H. N.
,
1965
, “
Elastic Vibration Characteristics of Cantilever Plates in Water
,”
J. Ship Res.
,
9
, pp.
11
22
.
21.
Price
,
W. G.
,
Randall
,
R.
, and
Temarel
,
P.
,
1988
, “
Fluid-Structure Interaction of Submerged Shells
,”
Naval Architecture and Offshore Engineering Conference
, Guildford, Surrey, UK.
22.
Randall
,
R. J.
,
1990
, “
Fluid-Structure Interaction of Submerged Shells
,” Ph.D. dissertation, Brunel University, London.
23.
Gilroy
,
L. E.
,
1993
, “
Finite Element Calculations of Cylinder Natural Frequencies
,” Defense Research Establishment Atlantic, Ottawa, ON, Canada, Technical Communication No. 93.
24.
Krysl
,
P.
,
2012
, “
FAESOR: Matlab Toolkit for Finite Element Analysis (Computer Software)
,” San Diego, CA, accessed July 25, 2018, http://hogwarts.ucsd.edu/~pkrysl/faesor
25.
Monterrubio
,
L. E.
, and
Ilanko
,
S.
,
2012
, “
Sets of Admissible Functions for the Rayleigh-Ritz Method
,”
11th International Conference on Computational Structures Technology
, Stirlingshire, UK, Sept. 4–7, Paper No. 97 2012.
26.
COMSOL
,
2009
,
Acoustics Module User Guide
,
COMSOL, Inc.
,
Burlington, MA
.
27.
ABAQUS
,
2011
, “
ABAQUS Version 6.11-2 User's Manual
,” Simulia, Providence, RI.
You do not currently have access to this content.