Abstract

Synchronous modal oscillations, characterized by unisonous motions for all physical coordinates, are well known. In turn, asynchronous oscillations lack a general definition to address all the associated features and implications. It might be thought, at first, that asynchronicity could be related to nonsimilar modes, which might be associated with phase differences between displacement and velocity fields. Due to such differences, the modes, although still periodic, might not be characterized by stationary waves so that physical coordinates might not attain their extreme values at the same instants of time, as in the case of synchronous modes. Yet, it seems that asynchronicity is more related to frequency rather than phase differences. A more promising line of thought associates asynchronous oscillations to different frequency contents over distinct parts of a system. That is the case when, in a vibration mode, part of the structure remains at rest, that is, with zero frequency, whereas other parts vibrate with non-null modal frequency. In such a scenario, localized oscillations would explain modal asynchronicity. When the system parameters are properly tuned, localization may appear even in very simple models, like Ziegler's columns, shear buildings, and slender structures. Now, the latter ones are recast, but finite rotations are assumed, in order to verify how nonlinearity affects existing linear asynchronous modes. For this purpose, the authors follow Shaw–Pierre's invariant manifold formulation. It is believed that full understanding of asynchronicity may apply to design of vibration controllers, microsensors, and energy-harvesting systems.

References

1.
Spiker
,
M. A.
,
2008
, “
Development of an Efficient Design Method for Non-Synchronous Vibrations
,”
Ph. D. thesis
, Duke University, Durham, NC.https://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/585/D_Spiker_Meredith_a_200805.pdf?sequence=1
2.
Smith
,
D. R.
, and
Wachel
,
J. C.
,
1983
, “
Nonsynchronous Forced Vibration in Centrifugal Compressors
,”
Turbomach. Int.
,
24
, pp.
21
24
.http://www.engdyn.com/images/uploads/25-nonsynchronous_forced_vibration_in_centrifugal_compressors_-_drs&jcw.pdf
3.
Scalzo
,
A. J.
,
Allen
,
J. M.
, and
Antos
,
R. J.
,
1986
, “
Analysis and Solution of a Nonsynchronous Vibration Problem in the Last Row Turbine Blade of a Large Industrial Combustion Turbine
,”
ASME J. Eng. Gas Turbines Power
,
108
(
4
), pp.
591
598
.
4.
Clark
,
S. T.
,
2013
, “
Design for Coupled-Mode Flutter and Non-Synchronous Vibration in Turbomachinery
,”
Ph. D. thesis
, Duke University, Durham, NC.http://adsabs.harvard.edu/abs/2013PhDT........61C
5.
Wang
,
H. F.
,
Chen
,
G.
, and
Song
,
P. P.
,
2015
, “
Asynchronous Vibration Response Characteristics of Aero-Engine With Support Looseness Fault
,”
ASME J. Comput. Nonlinear Dynam.
,
11
(
3
), p.
031013
.
6.
Wu
,
J.
,
Legrand
,
M.
, and
Pierre
,
C.
,
2010
, “
Non-Synchronous Vibration of a Jeffcott Rotor Due to Internal Radial Clearance in Roller Bearings
,”
The 8th IFToMM International Conference on Rotor Dynamics
(
KIST
), Seoul, Korea, Sept. 12–15, pp. 446–453.https://hal.archives-ouvertes.fr/hal-00533285/document
7.
Mobius Institute
, 2017, “
Vibration Analysis Dictionary: A Comprehensive Dictionary of Vibration Analysis Terms You May Run Across in Your Trade
,” Mobius Institute, North Victoria, Australia, accessed Sept. 25, 2017, http://www.mobiusinstitute.com/site2/item.asp?LinkID=2002
8.
Chao
,
C. P.
,
Lee
,
H. C.
, and
Shaw
,
S. W.
,
1997
, “
Non-Unison Dynamics of Multiple Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
204
(
5
), pp.
769
794
.
9.
Issa
,
J. S.
, and
Shaw
,
S. W.
,
2015
, “
Synchronous and Non-Synchronous Responses of Systems With Multiple Identical Nonlinear Vibration Absorbers
,”
J. Sound Vib.
,
348
, pp.
105
125
.
10.
Clough
,
R. W.
, and
Penzien
,
J.
,
2003
,
Dynamics of Structures
, Computers & Structures, Berkeley, CA
11.
Meirovitch
,
L.
,
2001
,
Fundamentals Vibrations
, McGraw-Hill, New York.
12.
Chopra
,
A. K.
,
1995
,
Dynamics of Structures: Theory and Applications to Earthquake Engineering
, Prentice Hall, Englewood Cliffs, NJ.
13.
Rosenberg
,
R. M.
,
1960
, “
Normal Modes of Nonlinear Dual-Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
.
14.
Rosenberg
,
R. M.
,
1962
, “
The Normal Modes of Non-Linear n-Degree-of Freedom Systems
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
7
14
.
15.
Rosenberg
,
R. M.
,
1966
, “
On Nonlinear Vibrations of Systems With Many Degrees of Freedom
,”
Adv. Appl. Mech.
,
9
, pp.
155
242
.
16.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.
17.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.
18.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1994
, “
Normal Modes of Vibration for Non-Linear Continuous Systems
,”
J. Sound Vib.
,
169
(
3
), pp.
319
347
.
19.
Boivin
,
N.
,
1995
, “
Non-Linear Modal Analysis of Structural Systems Using Invariant Manifolds
,”
Ph. D. thesis
, University of Michigan, Ann Arbor, MI.http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9610082
20.
Soares
,
M. S.
,
1998
, “
Modos Não Lineares em Sistemas Discretizados Pelo Método Dos Elementos Finitos [Non-Linear Modes in Systems Discretised by the Finite Element Method]
,” Ph.D. thesis, Universidade de São Paulo, São Paulo, Brazil.
21.
Vakakis
,
A. F.
,
1992
, “
Non-Similar Normal Oscillations in a Strongly Non-Linear Discrete System
,”
J. Sound Vib.
,
1508
(
2
), pp.
341
361
.
22.
Vakakis
,
A. F.
,
1997
, “
Non-Linear Normal Modes (Nnms) and Their Applications in Vibration Theory: An Overview
,”
Mech. Syst. Signal Process.
,
11
(
1
), pp.
3
22
.
23.
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.
24.
Lenci
,
S.
, and
Mazzilli
,
C. E. N.
,
2017
, “
Asynchronous Free Oscillations of Linear Mechanical Systems
,”
Int. J. Non-Linear Mech.
,
94
, pp.
223
234
.
25.
Lenci
,
S.
, and
Mazzilli
,
C. E. N.
,
2017
, “
Asynchronous Modes of Vibrations in Linear Conservative Systems: An Illustrative Discussion of Plane Framed Structures
,”
Meccanica
,
52
(
13
), pp.
3131
3147
.
26.
Mazzilli
,
C. E. N.
, and
Lenci
,
S.
,
2017
, “
Asynchronous Modes of Vibration in a Heavy-Chain Model
,”
17th International Symposium on Dynamics Problems of Mechanics
, São Sebastião, Brazil, Mar. 5–10.
27.
Mazzilli
,
C. E. N.
, and
Lenci
,
S.
,
2017
, “
Asynchronous Modes of Vibration in a Heavy-Chain Model With Linear and Rotational Springs
,”
9th European Nonlinear Dynamics Conference
(
ENOC2017
), Budapest, Hungary, June 25–30.https://www.congressline.hu/enoc2017/
28.
Ribeiro
,
E. A. R.
,
Mazzilli
,
C. E. N.
, and
Lenci
,
S.
,
2017
, “
Influence of Geometric Non-Linearities in the Asynchronous Modes of a Heavy-Chain Model
,”
EMI International Conference
, Rio de Janeiro, Brazil, Mar. 19–22.
29.
Perchikov
,
N.
, and
Gendelman
,
O. V.
,
2016
, “
Nonlinear Dynamics of Hidden Modes in a System With Internal Symmetry
,”
J. Sound Vib.
,
377
, pp.
185
215
.
30.
Timoshenko
,
S.
,
1940
,
Strength of Materials
, D. Van Nostrand Company, New York.
31.
Timoshenko
,
S. K.
, and
Krieger
,
S. W.
,
1959
,
Theory of Plates and Shells
, McGraw-Hill, New York.
You do not currently have access to this content.