In this paper, time-delayed feedback (TD-FB) control is introduced for a nonlinear vibration isolator (NL-VI), and the isolation effectiveness features are investigated theoretically and experimentally. In the feedback control loop, compound control with constant and variable time delays is considered. First, a stability analysis is conducted to determine the range of control parameters for stable zero equilibrium without excitation. Next, the nonlinear resonance frequency and the nonlinear vibration attenuation are studied by the method of multiple scales (MMS) to demonstrate the mechanism of TD-FB control. The results of the nonlinear vibration performances show that large variable time delays can improve the vibration suppression. Additionally, the mechanism for the time delay is not only to tune the equivalent stiffness and damping but also to induce effective isolation bandgap at high frequency. Therefore, the variable time delay is assumed as the function of frequency to meet different requirements at different frequency bands. The relevant experiment verifies the improvement of designed variable time delay on isolation performances in different frequency bands. Due to the improvement of isolation performances by compound time delay feedback control on nonlinear systems, it can be applied in the fields of ships, flexible structure in aerospace and aviation.

References

References
1.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
2.
Lee
,
C. M.
,
Goverdovskiy
,
V. N.
, and
Temnikov
,
A. I.
,
2007
, “
Design of Springs With Negative Stiffness to Improve Vehicle Driver Vibration Isolation
,”
J. Sound Vib.
,
302
(
4–5
), pp.
865
874
.
3.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Vibration Isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
.
4.
Zheng
,
Y.
,
Zhang
,
X.
,
Luo
,
Y.
,
Yan
,
B.
, and
Ma
,
C.
,
2016
, “
Design and Experiment of a High-Static-Low-Dynamic Stiffness Isolator Using a Negative Stiffness Magnetic Spring
,”
J. Sound Vib.
,
360
, pp.
31
52
.
5.
Sun
,
X. T.
, and
Jing
,
X. J.
,
2015
, “
Multi-Direction Vibration Isolation With Quasi-Zero Stiffness by Employing Geometrical Nonlinearity
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
149
163
.
6.
Zhou
,
J. X.
,
Wang
,
X.
,
Xu
,
D. L.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
(
1
), pp.
53
69
.
7.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
,
V.
, Jr
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.
8.
Fu
,
J.
,
Li
,
P.
,
Liao
,
G.
,
Lai
,
J.
, and
Yu
,
M.
,
2016
, “
Development and Dynamic Characterization of a Mixed Mode Magnetorheological Elastomer Isolator
,”
IEEE Trans. Magn.
,
53
(
1
), pp.
1
4
.
9.
Hao
,
Z. F.
,
Cao
,
Q. J.
, and
Wiercigroch
,
M.
,
2016
, “
Two-Sided Damping Constraint Control Strategy for High-Performance Vibration Isolation and End-Stop Impact Protection
,”
Nonlinear Dyn.
,
86
(
4
), pp.
1
16
.
10.
Andreaus
,
U.
,
Baragatti
,
P.
,
Angelis
,
M. D.
, and
Perno
,
S.
,
2017
, “
Shaking Table Tests and Numerical Investigation of Two-Sided Damping Constraint for End-Stop Impact Protection
,”
Nonlinear Dyn.
,
90
(
4
), pp.
1
35
.
11.
Hao
,
Z. F.
,
Cao
,
Q. J.
, and
Wiercigroch
,
M.
,
2017
, “
Nonlinear Dynamics of the Quasi-Zero-Stiffness SD Oscillator Based Upon the Local and Global Bifurcation Analyses
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1
28
.
12.
Han
,
N.
, and
Cao
,
Q. J.
,
2017
, “
A Parametrically Excited Pendulum With Irrational Nonlinearity
,”
Int. J. Nonlinear Mech.
,
88
, pp.
122
134
.
13.
Vyhlídal
,
T.
,
Anderle
,
M.
,
Bušek
,
J.
, and
Niculescu
,
S. I.
,
2017
, “
Time Delay Algorithms for Damping Oscillations of Suspended Payload by Adjusting the Cable Length
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2319
2328
.
14.
Anubi
,
M.
, and
Crane
,
C.
,
2014
, “
A New Semiactive Variable Stiffness Suspension System Using Combined Skyhook and Nonlinear Energy Sink-Based Controllers
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
937
947
.
15.
Chen
,
M. Z. Q.
,
Hu
,
Y.
,
Li
,
C.
, and
Chen
,
G.
,
2014
, “
Performance Benefits of Using Inerter in Semiactive Suspensions
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1571
1577
.
16.
Casciati
,
F.
,
Rodellar
,
J.
, and
Yildirim
,
U.
,
2012
, “
Active and Semi-Active Control of Structures-Theory and Applications: A Review of Recent Advances
,”
J. Intell. Mater. Syst. Struct.
,
23
(
11
), pp.
1181
1195
.
17.
Roy
,
S.
,
Kar
,
I. N.
, and
Lee
,
J.
,
2017
, “
Toward Position-Only Time-Delayed Control for Uncertain Euler–Lagrange Systems: Experiments on Wheeled Mobile Robots
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
1925
1932
.
18.
Lee
,
J.
,
Chang
,
P. H.
, and
Jin
,
M.
,
2017
, “
Adaptive Integral Sliding Mode Control With Time-Delay Estimation for Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
64
(
8
), pp.
6796
6804
.
19.
Olgac
,
N.
, and
Jalili
,
N.
,
1998
, “
Modal Analysis of Flexible Beams With Delayed Resonator Vibration Absorber: Theory and Experiments
,”
J. Sound Vib.
,
218
(
2
), pp.
307
331
.
20.
Xu
,
J.
, and
Sun
,
Y. X.
,
2015
, “
Experimental Studies on Active Control of a Dynamic System Via a Time-Delayed Absorber
,”
Acta Mech. Sin.
,
31
(
2
), pp.
229
247
.
21.
Xu
,
Q.
,
Stepan
,
G.
, and
Wang
,
Z. H.
,
2016
, “
Delay-Dependent Stability Analysis by Using Delay-Independent Integral Evaluation
,”
Automatica
,
70
, pp.
153
157
.
22.
Ramachandran
,
P.
, and
Ram
,
Y. M.
,
2012
, “
Stability Boundaries of Mechanical Controlled System With Time Delay
,”
Mech. Syst. Signal Process.
,
27
(
1
), pp.
523
533
.
23.
Zhang
,
X. X.
,
Xu
,
J.
, and
Ji
,
J. C.
,
2018
, “
Modelling and Tuning for a Time-Delayed Vibration Absorber With Friction
,”
J. Sound Vib.
,
424
, pp.
137
157
.
24.
Zhang
,
X. X.
, and
Xu
,
J.
,
2015
, “
Identification of Time Delay in Nonlinear Systems With Delayed Feedback Control
,”
J. Franklin Inst.
,
352
(
8
), pp.
2987
2998
.
25.
Sun
,
Y. X.
, and
Xu
,
J.
,
2015
, “
Experiments and Analysis for a Controlled Mechanical Absorber Considering Delay Effect
,”
J. Sound Vib.
,
339
, pp.
25
37
.
26.
Zhou
,
J. X.
,
Xu
,
D. L.
, and
Li
,
Y. L.
,
2011
, “
An Active-Passive Nonlinear Vibration Isolation Method Based on Optimal Time-Delay Feedback Control
,”
J. Vib. Eng.
,
24
(
9–10
), pp.
639
645
.
27.
Sun
,
X. T.
,
Xu
,
J.
,
Jing
,
X. J.
, and
Cheng
,
L.
,
2014
, “
Beneficial Performance of a Quasi-Zero-Stiffness Vibration Isolator With Time-Delayed Active Control
,”
Int. J. Mech. Sci.
,
82
(
1
), pp.
32
40
.
You do not currently have access to this content.