We describe herein a method for extending the load range of a vibration isolator using a foldable cylinder consisting of a torsional buckling pattern and evaluate the vibration isolating performance through excitation experiments. A previous study determined that the foldable cylinder is bistable and acts as a vibration isolator with nonlinear characteristics in a displacement region, where the spring stiffness is zero. Its spring characteristics and vibration isolating performance were clarified by numerical analysis and excitation experiments. The findings indicated that the vibration in a certain frequency range is reduced where the spring stiffness is zero. However, this vibration isolator has a disadvantage in that it can only support an initial load that transfers to the zero-spring-stiffness region. Therefore, in this research, we improve the position of the linear spring attached to the isolator. As a result, the initial load range is extended by two to four times that of the conventional vibration isolator. Furthermore, the isolating performance is maintained even when the initial load is changed within a given load range.

References

References
1.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
2.
Carrella
,
A.
,
2010
, “
Passive Vibration Isolators With High-Static-Low-Dynamic-Stiffness
,”
Doctoral thesis
, VDM Verlag, Saarbrücken, Germany.https://eprints.soton.ac.uk/51276/1/P2449.pdf
3.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.
4.
Lee
,
C. M.
,
Goverdovskiy
,
V. N.
, and
Temnikov
,
A. I.
,
2007
, “
Design of Springs With Negative Stiffness to Improve Vehicle Driver Vibration Isolation
,”
J. Sound Vib.
,
302
(
4–5
), pp.
865
874
.
5.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
6.
Fujita
,
E.
,
1999
, “
New Vibration System Using a Magneto-Spring (in Japanese)
,”
J. Magn. Soc. Jpn.
,
23
(
3
), pp.
840
846
.
7.
Robertson
,
W. S.
,
Kidner
,
M. R. F.
,
Cazzolato
,
B. S.
, and
Zander
,
A. C.
,
2009
, “
Theoretical Design Parameters for a Quasi-Zero Stiffness Magnetic Spring for Vibration Isolation
,”
J. Sound Vib.
,
326
(
1–2
), pp.
88
103
.
8.
Xu
,
D.
,
Yu
,
Q.
,
Zhou
,
J.
, and
Bishop
,
S. R.
,
2013
, “
Theoretical and Experimental Analysis of a Nonlinear Magnetic Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
332
(
14
), pp.
3377
3389
.
9.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
10.
Nojima
,
T.
,
2002
, “
Modeling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
Int. J. Jpn. Soc. Mech. Eng.
,
45
(
1
), pp.
364
370
.
11.
Nagashima
,
G.
, and
Nojima
,
T.
,
1999
, “
Development of Foldable Triangulated Cylinder (in Japanese)
,”
Seventh JSME Materials and Processing Conference (M&P)
, pp.
153
154
.
12.
Ishida
,
S.
,
Uchida
,
H.
, and
Hagiwara
,
I.
,
2014
, “
Vibration Isolators Using Nonlinear Spring Characteristics of Origami-Based Foldable Structures (in Japanese)
,”
J. Jpn. Soc. Mech. Eng.
,
80
(
820
), p.
DR0384
.
13.
Ishida
,
S.
,
Uchida
,
H.
,
Shimosaka
,
H.
, and
Hagiwara
,
I.
,
2017
, “
Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031015
.
14.
Ishida
,
S.
,
Suzuki
,
K.
, and
Shimosaka
,
H.
,
2017
, “
Design and Experimental Analysis of Origami-Inspired Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051004
.
15.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
First International Seminar on Structural Morphology
, pp.
203
215
.
16.
Nojima
,
T.
,
2001
, “
Structure With Folding Lines, Folding Line Forming Mold, and Folding Line Forming Method
,” Tanaka Patent Office, Tokyo, Japan, Patent No.
WO/2001/081821
.https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2001081821
17.
Miura
,
K.
,
2013
, “
Foldable Plate Structures and Applications
,”
Bull. Soc. Automot. Technol. Jpn.
,
67
(
5
), pp.
52
58
(in Japanese).
18.
Tachi
,
T.
,
2009
, “
One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels
,”
International Association for Shell and Spatial Structures (IASS) Symposium
, Valencia, Spain, Sept. 28–Oct. 2, pp. 1–11.
19.
Ishida
,
S.
,
Nojima
,
T.
, and
Hagiwara
,
I.
,
2015
, “
Regular Folding Pattern for Deployable Nonaxisymmetric Tubes
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091402
.
20.
Natori
,
M. C.
,
Katsumata
,
N.
,
Yamakawa
,
H.
,
Sakamoto
,
H.
, and
Kishimoto
,
N.
,
2013
, “
Conceptual Model Study Using Origami for Membrane Space Structures
,”
ASME
Paper No.
DETC2013-13490.
You do not currently have access to this content.