The current paper aims to provide an optimal stable fuzzy controller to extend the travel range of a pair of flexible electrostatically actuated circular microplates beyond their pull-in limit. The single mode assumption is utilized to derive the equation of motion of the system based on a Lagrangian approach. The static behavior of the system is studied using the proposed model, and the utilized assumption and the relevant results are closely verified by nonlinear finite element simulations. The open-loop dynamic analysis is also performed to derive the linguistic rules governing the voltage-deflection behavior of the system. The mentioned rules are then employed for designing a fuzzy controller, which controls the deflection of the microplates. The controller is then optimized to provide better response specifications. The performance of the optimal fuzzy controller is compared with that of the optimal proportional–integral–derivative (PID) controller and obvious superiorities in terms of noise suppression and stability enhancement are observed. To guarantee the stability of the closed-loop system, another higher level controller is designed to oversee the behavior of the fuzzy controller. Simulation results reveal that the superintended fuzzy controller can prevent instability, while fairly extending the travel range of system and providing it with a better transient response. The suggested design approach proposed in this paper may be used to improve the performance of many nano/micro devices and nano/micro positioning systems.

References

References
1.
Gad-el-Hak
,
M.
,
2005
,
MEMS: Applications
,
CRC Press
,
Boca Raton, FL
.
2.
Bell
,
D. J.
,
Lu
,
T.
,
Fleck
,
N. A.
, and
Spearing
,
S. M.
,
2005
, “
MEMS Actuators and Sensors: Observations on Their Performance and Selection for Purpose
,”
J. Micromech. Microeng.
,
15
(
7
), p.
S153
.
3.
Chiou
,
J.-C.
,
Lin
,
Y.-J.
, and
Kuo
,
C.-F.
,
2007
, “
Extending the Traveling Range With a Cascade Electrostatic Comb-Drive Actuator
,”
J. Micromech. Microeng.
,
18
(
1
), p.
015018
.
4.
Olfatnia
,
M.
,
Sood
,
S.
,
Gorman
,
J. J.
, and
Awtar
,
S.
,
2013
, “
Large Stroke Electrostatic Comb-Drive Actuators Enabled by a Novel Flexure Mechanism
,”
J. Microelectromech. Syst.
,
22
(
2
), pp.
483
494
.
5.
Trivedi
,
R.
,
Pawaskar
,
D. N.
, and
Shimpi
,
R.
,
2016
, “
Optimization of Static and Dynamic Travel Range of Electrostatically Driven Microbeams Using Particle Swarm Optimization
,”
Adv. Eng. Software
,
97
, pp.
1
16
.
6.
Ye
,
W.
,
Mukherjee
,
S.
, and
MacDonald
,
N. C.
,
1998
, “
Optimal Shape Design of an Electrostatic Comb Drive in Microelectromechanical Systems
,”
J. Microelectromech. Syst.
,
7
(
1
), pp.
16
26
.
7.
Shirazi
,
F. A.
,
Velni
,
J. M.
, and
Grigoriadis
,
K. M.
,
2011
, “
An LPV Design Approach for Voltage Control of an Electrostatic MEMS Actuator
,”
J. Microelectromech. Syst.
,
20
(
1
), pp.
302
311
.
8.
Chen
,
H.
,
Sun
,
W.
,
Chen
,
A.
,
Yeow
,
J.
, and
Sun
,
Z.
, “
High Performance Closed-Loop Control of a 2D MEMS Micromirror With Sidewall Electrodes for a Laser Scanning Microscope System
,”
International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale
(
3M-NANO
), Taipei, Taiwan, Oct. 27–31, pp.
12
17
.
9.
Chen
,
H.
,
Sun
,
W.
,
Sun
,
Z.
, and
Yeow
,
J.
,
2012
, “
Second-Order Sliding Mode Control of a 2D Torsional MEMS Micromirror With Sidewall Electrodes
,”
J. Micromech. Microeng.
,
23
(
1
), p.
015006
.
10.
Gronle
,
M.
,
Zhu
,
G.
, and
Saydy
,
L.
, “
Sliding Mode Tracking Control of an Electrostatic Parallel-Plate MEMS
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Montreal, ON, Canada, July 6–9, pp.
999
1004
.
11.
Zhu
,
G.
,
Saydy
,
L.
,
Hosseini
,
M.
,
Chianetta
,
J.-F.
, and
Peter
,
Y.-A.
,
2008
, “
A Robustness Approach for Handling Modeling Errors in Parallel-Plate Electrostatic MEMS Control
,”
J. Microelectromech. Syst.
,
17
(
6
), pp.
1302
1314
.
12.
Pouly
,
G.
,
Huynh
,
T.-H.
,
Lauffenburger
,
J.-P.
, and
Basset
,
M.
,
2011
, “
State Feedback Fuzzy Adaptive Control for Active Shimmy Damping
,”
Eur. J. Control
,
17
(
4
), pp.
370
393
.
13.
Hacioglu
,
Y.
,
Arslan
,
Y. Z.
, and
Yagiz
,
N.
,
2011
, “
MIMO Fuzzy Sliding Mode Controlled Dual Arm Robot in Load Transportation
,”
J. Franklin Inst.
,
348
(
8
), pp.
1886
1902
.
14.
Vatankhah
,
R.
, and
Asemani
,
M. H.
,
2017
, “
Output Feedback Control of Piezoelectrically Actuated Non-Classical Micro-Beams Using TS Fuzzy Model
,”
J. Franklin Inst.
,
354
(
2
), pp.
1042
1065
.
15.
Radgolchin
,
M.
,
Moeenfard
,
H.
, and
Ghasemi
,
A. H.
,
2016
, “
A Two-Level Adaptive Fuzzy Control Algorithm for Beyond Pull-in Stabilization of Electrostatically Actuated Microplates
,”
ASME
Paper No. DSCC2016-9841.
16.
Chiou
,
J.
,
Lin
,
Y.
, and
Wu
,
S.
,
2002
, “
Closed-Loop Fuzzy Control of Torsional Micromirror With Multiple Electrostatic Electrodes
,”
IEEE/LEOS
International Conference on Optical MEMs
, Lugano, Switzerland, Aug. 20–23, pp.
85
86
.
17.
Khadembashi
,
M.
,
Moeenfard
,
H.
, and
Ghasemi
,
A. H.
, 2016, “
Deflection Control OF Electrostatically Actuated Micro Cantilevers Via Fuzzy Controller
,”
ASME
Paper No. DSCC2016-9838.
18.
Feng
,
G.
,
Cao
,
S.
,
Rees
,
N.
, and
Chak
,
C.
,
1997
, “
Design of Fuzzy Control Systems With Guaranteed Stability
,”
Fuzzy Sets Syst.
,
85
(
1
), pp.
1
10
.
19.
Chen
,
C.-S.
, and
Chen
,
W.-L.
,
1998
, “
Robust Adaptive Sliding-Mode Control Using Fuzzy Modeling for an Inverted-Pendulum System
,”
IEEE Trans. Ind. Electron.
,
45
(
2
), pp.
297
306
.
20.
Lei
,
D.
,
Wang
,
T.
,
Di
,
C.
, and
Fei
,
J.
,
2016
, “
Adaptive Dynamic Surface Control of MEMS Gyroscope Sensor Using Fuzzy Compensator
,”
IEEE Access
,
4
, pp.
4148
4154
.
21.
Fei
,
J.
, and
Zhou
,
J.
,
2012
, “
Robust Adaptive Control of MEMS Triaxial Gyroscope Using Fuzzy Compensator
,”
IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
,
42
(
6
), pp.
1599
1607
.
22.
Radgolchin
,
M.
, and
Moeenfard
,
H.
,
2016
, “
Development of a Multi-Level Adaptive Fuzzy Controller for Beyond Pull-In Stabilization of Electrostatically Actuated Microplates
,”
J. Vib. Control
,
24
(5), pp. 860–878.
23.
Rigatos
,
G.
,
Zhu
,
G.
,
Yousef
,
H.
, and
Boulkroune
,
A.
,
2016
, “
Flatness-Based Adaptive Fuzzy Control of Electrostatically Actuated MEMS Using Output Feedback
,”
Fuzzy Sets Syst.
,
290
, pp.
138
157
.
24.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
,
Hoboken, NJ
.
25.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
26.
Soedel
,
W.
,
2004
,
Vibrations of Shells and Plates
, Marcel Dekker, New York.
27.
Nader
,
M.
,
Gattringer
,
H.
,
Krommer
,
M.
, and
Irschik
,
H.
,
2003
, “
Shape Control of Flexural Vibrations of Circular Plates by Shaped Piezoelectric Actuation
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
88
94
.
28.
Philen
,
M. K.
, and
Wang
,
K.
,
2005
, “
Active Stiffeners for Vibration Control of a Circular Plate Structure: Analytical and Experimental Investigations
,”
ASME J. Vib. Acoust.
,
127
(
5
), pp.
441
450
.
29.
Vogl
,
G. W.
,
2006
, “
Nonlinear Dynamics of Circular Plates Under Electrical Loadings for Capacitive Micromachined Ultrasonic Transducers (CMUTs)
,”
Ph.D. dissertation
, Virginia Polytechnic Institute, Blacksburg, VA.
30.
Gani
,
A.
, and
Salami
,
M.
, 2002, “
A LabVIEW Based Data Acquisition System for Vibration Monitoring and Analysis
,” Student Conference on
Research and Development
(
SCOReD
), Shah Alam, Malaysia, July 17, pp.
62
65
.
31.
Wang
,
L.-X.
,
1999
,
A Course in Fuzzy Systems
,
Prentice Hall Press, Upper Saddle River
,
NJ
.
32.
Solihin
,
M. I.
,
Kamal
,
M.
, and
Legowo
,
A.
, “
Objective Function Selection of GA-Based PID Control Optimization for Automatic Gantry Crane
,”
International Conference on Computer and Communication Engineering
(
ICCCE
),
Kuala Lumpur, Malaysia
,
May 13–15
, pp.
883
887
.
33.
Valluru
,
S. K.
, and
Singh
,
M.
,
2018
, “
Performance Investigations of APSO Tuned Linear and Nonlinear PID Controllers for a Nonlinear Dynamical System
,”
J. Electr. Syst. Inf. Technol.
(in press).
34.
Verma
,
O. P.
,
Manik
,
G.
, and
Jain
,
V. K.
,
2017
, “
Simulation and Control of a Complex Nonlinear Dynamic Behavior of Multi-Stage Evaporator Using PID and Fuzzy-PID Controllers
,”
J. Comput. Sci.
,
25
, pp.
238
251
.
35.
Yang
,
Z.
,
Matsumoto
,
S.
,
Goto
,
H.
,
Matsumoto
,
M.
, and
Maeda
,
R.
,
2001
, “
Ultrasonic Micromixer for Microfluidic Systems
,”
Sens. Actuators A: Phys.
,
93
(
3
), pp.
266
272
.
You do not currently have access to this content.