A method is presented to improve the estimates of material properties, dimensions, and other model parameters for linear vibrating systems. The method improves the estimates of a single model parameter of interest by finding parameter values that bring model predictions into agreement with experimental measurements. A truncated Neumann series is used to approximate the inverse of the dynamic stiffness matrix. This approximation avoids the need to directly solve the equations of motion for each parameter variation. The Neumman series is shown to be equivalent to a Taylor series expansion about nominal parameter values. A recursive scheme is presented for computing the associated derivatives, which are interpreted as sensitivities of displacements to parameter variations. The convergence of the Neumman series is studied in the context of vibrating systems, and it is found that the spectral radius is strongly dependent on system resonances. A homogeneous viscoelastic bar in longitudinal vibration is chosen as a test specimen, and the complex-valued Young's modulus is chosen as an uncertain parameter. The method is demonstrated on simulated experimental measurements computed from the model. These demonstrations show that parameter values estimated by the method agree with those used to simulate the experiment when enough terms are included in the Neumann series. Similar results are obtained for the case of an elastic plate with clamped boundary conditions. The method is also demonstrated on experimental data, where it produces improved parameter estimates that bring the model predictions into agreement with the measured response to within 1% at a point on the bar across a frequency range that includes three resonance frequencies.

References

References
1.
Gomez
,
S. S.
, and
Metrikine
,
A. V.
,
2018
, “
The Energy Flow Analysis as a Tool for Identification of Damping in Tall Buildings Subjected to Wind: Contributions of the Foundation and the Building Structure
,”
ASME J. Vib. Acoust.
(accepted).
2.
Lima
,
A. M. G. D.
,
Bouhaddi
,
N.
,
Rade
,
D. A.
, and
Belonsi
,
M.
,
2015
, “
A Time-Domain Finite Element Model Reduction Method for Viscoelastic Linear and Nonlinear Systems
,”
Latin Am. J. Solids Struct.
,
12
(
6
), pp.
1182
1201
.
3.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis. The Primer
,
Wiley
,
New York
.
4.
Mottershed
,
J. E.
,
Link
,
M.
, and
Friswell
,
M.
,
2011
, “
The Sensitivity Method in Finite Element Model Updating: A Tutorial
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2275
2296
.
5.
Ngaradoumbe Nanhorngué
,
R.
,
Pesavento
,
F.
, and
Schrefler
,
B. A.
,
2013
, “
Sensitivity Analysis Applied to Finite Element Method Model for Coupled Multiphase System
,”
Int. J. Numer. Anal. Methods Geomech.
,
37
(
14
), pp.
2205
2222
.
6.
Elizondo
,
D.
,
Cappelaere
,
B.
, and
Faure
,
C.
,
2002
, “
Automatic Versus Manual Model Differentiation to Compute Sensitivities and Solve Non-Linear Inverse Problems
,”
Comput. Geosciences
,
28
(
3
), pp.
309
326
.
7.
Yang
,
Q. W.
,
2009
, “
Model Reduction by Neumann Series Expansion
,”
Appl. Math. Modell.
,
33
(
12
), pp.
4431
4434
.
8.
Yang
,
Q. W.
,
2009
, “
A Mixed Sensitivity Method for Structural Damage Detection
,”
Commun. Numer. Methods Eng.
,
25
(
4
), pp.
381
389
.
9.
Sinha
,
A.
, and
Chen
,
S.
,
1989
, “
A Higher Order Technique to Compute the Statistics of Forced Response of a Mistuned Bladed Assembly
,”
J. Sound Vib.
,
130
(
2
), pp.
207
221
.
10.
Lalanne
,
B.
,
2005
, “
Perturbations Methods in Structural Dynamics and Applications to Cyclic Symmetric Domains
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp. 654–662.
11.
Han
,
Y.
, and
Mignolet
,
M. P.
,
2015
, “
A Novel Perturbation-Based Approach for the Prediction of the Forced Response of Damped Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
137
(
4
), p. 041008.
12.
Qiu
,
Z.
,
Chen
,
S.
, and
Song
,
D.
,
1996
, “
The Displacement Bound Estimation for Structures With an Interval Description of Uncertain Parameters
,”
Commun. Numer. Methods Eng.
,
12
(
1
), pp. 1–11.
13.
Qiu
,
Z.
,
Chen
,
S.
, and
Elishakoff
,
I.
,
1996
, “
Bounds of Eigenvalues for Structures With an Interval Description of Uncertain-but-Non-Random Parameters
,”
Chaos, Solitons Fractals
,
7
(
3
), pp.
425
434
.
14.
Qiu
,
Z.
, and
Elishakoff
,
I.
,
1998
, “
Antioptimization of Structures With Large Uncertain-but-Nonrandom Parameters Via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
(
3–4
), pp.
361
372
.
15.
Degrauwe
,
D.
,
Lombaert
,
G.
, and
De Roeck
,
G.
,
2010
, “
Improving Interval Analysis in Finite Element Calculations by Means of Affine Arithmetic
,”
Comput. Struct.
,
88
(
3–4
), pp.
247
254
.
16.
Chen
,
S. H.
,
Ma
,
L.
,
Meng
,
G. W.
, and
Guo
,
R.
,
2009
, “
An Efficient Method for Evaluating the Natural Frequencies of Structures With Uncertain-but-Bounded Parameters
,”
Comput. Struct.
,
87
(
9–10
), pp.
582
590
.
17.
Qiu
,
Z.
,
Ma
,
L.
, and
Wang
,
X.
,
2009
, “
Non-Probabilistic Interval Analysis Method for Dynamic Response Analysis of Nonlinear Systems With Uncertainty
,”
J. Sound Vib.
,
319
(
1–2
), pp.
531
540
.
18.
Sliva
,
G.
,
Brezillon
,
A.
,
Cadou
,
J. M.
, and
Duigou
,
L.
,
2010
, “
A Study of the Eigenvalue Sensitivity by Homotopy and Perturbation Methods
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2297
2302
.
19.
Xia
,
B.
, and
Yu
,
D.
,
2012
, “
Modified Sub-Interval Perturbation Finite Element Method for 2D Acoustic Field Prediction With Large Uncertain-but-Bounded Parameters
,”
J. Sound Vib.
,
331
(
16
), pp.
3774
3790
.
20.
Xia
,
B.
,
Yu
,
D.
, and
Liu
,
J.
,
2013
, “
Probabilistic Interval Perturbation Methods for Hybrid Uncertain Acoustic Field Prediction
,”
ASME J. Vib. Acoust.
,
135
(
2
), p. 021009.
21.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1996
,
Matrix Computations
,
The Johns Hopkins University Press
, Baltimore, MD.
22.
Young
,
N. J.
,
1981
, “
The Rate of Convergence of a Matrix Power Series
,”
Linear Algebra Its Appl.
,
35
, p.
17
.
23.
Bauschke
,
H. H.
,
Bello Cruz
,
J. Y.
,
Nghia
,
T. A.
,
Phan
,
H. M.
, and
Wang
,
X.
,
2014
, “
Optimal Rates of Convergence of Matrices With Applications
,” arXiv:1407.0671.
24.
Meyer
,
C. D.
,
2001
,
Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
25.
Nashif
,
A. D.
,
Jones
,
D. I. G.
, and
Henderson
,
J. P.
,
1985
,
Vibration Damping
,
Wiley
, Hoboken, NJ.
26.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp. 201–210.
27.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wrigth
,
M. H.
, and
Wright
,
P. E.
,
1988
, “
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
28.
Matrix Market,
2018
, “BCSSTRUC1: BCS Structural Engineering Matrices (Eigenvalue Matrices)” Matrix Market, Gaithersburg, MD, accessed July 5, 2018, https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc1/bcsstruc1.html
29.
Zhang
,
J.
,
Perez
,
R. J.
, and
Lavernia
,
E. J.
,
1993
, “
Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials
,”
J. Mater. Sci.
,
28
(
9
), pp.
2395
2404
.
You do not currently have access to this content.