In this paper, the energy dissipated in a tall building is identified by means of the energy flow analysis. This approach allows assessing energy dissipation within a specific domain or element of the structure. In this work, the focus is placed on the superstructure, which is the part of the building above the ground, and on the foundation. Damping operators for the superstructure and the foundation are formulated based on the identified energy dissipation in these parts of the building. The obtained damping operators are used to compute the modal damping ratios in a simplified model of the building. The modal damping ratios of the three lowest modes of vibration are compared to those identified in full-scale measurements by means of the half-power bandwidth method.

References

1.
Jeary
,
A. P.
,
1986
, “
Damping in Tall Buildings-a Mechanism and a Predictor
,”
Earthquake Eng. Struct. Dyn.
,
14
(
5
), pp.
733
750
.
2.
Lagomarsino
,
S.
,
1993
, “
Forecast Models for Damping and Vibration Periods of Buildings
,”
J. Wind Eng. Ind. Aerodyn.
,
48
(
2–3
), pp.
221
239
.
3.
Tamura
,
Y.
,
Satake
,
N.
,
Arakawa
,
T.
, and
Sasaki
,
A.
,
2003
, “
Damping Evaluation Using Full-Scale Data of Buildings in Japan
,”
J. Struct. Eng.
,
129
(
4
), pp.
470
477
.
4.
Davenport
,
A.
, and
Caroll
,
P. H.
,
1986
, “
Damping in Tall Buildings: Its Variability and Treatment in Design
,”
ASCE Spring Convention
, Seattle, WA, pp. 42–57.
5.
Ewins
,
D.
,
2000
,
Modal Testing: Theory, Practice and Application
,
Research Studies Press
, Hertfordsire, UK.
6.
Peeters
,
B.
, and
Roeck
,
G. D.
,
2001
, “
Stochastic System Identification for Operational Modal Analysis: A Review
,”
ASME J. Dyn. Syst., Meas. Control
,
123
(
4
), pp.
659
667
.
7.
He
,
J.
, and
Fu
,
Z.-F.
,
2001
,
Modal Analysis
,
Butterworth-Heinemann
,
Oxford, UK
.
8.
Gómez
,
S. S.
,
Metrikine
,
A.
,
Carboni
,
B.
, and
Lacarbonara
,
W.
,
2017
, “
Identification of Energy Dissipation in Structural Joints by Means of the Energy Flow Analysis
,”
ASME J. Vib. Acoust.
,
140
(
1
), p. 011007.
9.
Gómez
,
S.
, and
Metrekine
,
A.
,
2017
, “
Evaluation of the Applicability of an Energy Method to Calculate the Damping in a Lab-Scale Structure
,”
Procedia Engineering: X International Conference on Structural Dynamics (EURODYN)
, Vol.
199
, pp.
459
464
.
10.
Wohlever
,
J.
, and
Bernhard
,
R.
,
1992
, “
Mechanical Energy Flow Models of Rods and Beams
,”
J. Sound Vib.
,
153
(
1
), pp.
1
19
.
11.
Wickert
,
J. A.
, and
Mote
,
C.
,
1989
, “
On the Energetics of Axially Moving Continua
,”
J. Acoust. Soc. Am.
,
85
(
3
), pp.
1365
1368
.
12.
Barakat
,
R.
,
1968
, “
Transverse Vibrations of a Moving Thin Rod
,”
J. Acoust. Soc. Am.
,
43
(
3
), pp. 533–539.
13.
Lase
,
Y.
,
Ichchou
,
M.
, and
Jezequel
,
L.
,
1996
, “
Energy Flow Analysis of Bars and Beams: Theoretical Formulations
,”
J. Sound Vib.
,
192
(
1
), pp.
281
305
.
14.
Bouthier
,
O.
, and
Bernhard
,
R.
,
1995
, “
Simple Models of the Energetics of Transversely Vibrating Plates
,”
J. Sound Vib.
,
182
(
1
), pp.
149
164
.
15.
Han
,
F.
,
Bernhard
,
R.
, and
Mongeau
,
L.
,
1997
, “
Energy Flow Analysis of Vibrating Beams and Plates for Discrete Random Excitations
,”
J. Sound Vib.
,
208
(
5
), pp.
841
859
.
16.
Lebot
,
A.
, and
Jezequel
,
L.
,
1993
, “
Energy Methods Applied to Transverse Vibrations of Beams
,”
Fourth International Congress on Intensity Techniques
, pp.
371
378
.
17.
Pinnington
,
R.
, and
Lednik
,
D.
,
1996
, “
Transient Energy Flow Between Two Coupled Beams
,”
J. Sound Vib.
,
189
(
2
), pp.
265
287
.
18.
Alfredsson
,
K.
,
1997
, “
Active and Reactive Structural Energy Flow
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
70
79
.
19.
Sorokin
,
S.
,
Nielsen
,
J.
, and
Olhoff
,
N.
,
2001
, “
Analysis and Optimization of Energy Flows in Structures Composed of Beam Elements–Part I: Problem Formulation and Solution Technique
,”
Struct. Multidiscip. Optim.
,
22
(
1
), pp.
3
11
.
20.
Bouthier
,
O.
, and
Bernhard
,
R.
,
1995
, “
Simple Models of Energy Flow in Vibrating Membranes
,”
J. Sound Vib.
,
182
(
1
), pp.
129
147
.
21.
Hegazy
,
Y. A.
, and
Mayne
,
1995
, “
Statistical Correlations Between Vs and Cone Penetration Data for Different Soil Types
,” Paper No. A87.
22.
Mayne
,
P. W.
, and
Rix
,
G. J.
,
1995
, “
Correlations Between Shear Wave Velocity and Cone Tip Resistance in Natural Clays
,”
Soils Foundations
,
35
(
2
), pp.
107
110
.
23.
Andrus
,
R. D.
,
Mohanan
,
N. P.
,
Piratheepan
,
P.
,
Ellis
,
B.
, and
Holzer
,
T. L.
,
2007
, “
Predicting Shear-Wave Velocity From Cone Penetration Resistance
,”
Fourth International Conference on Earthquake Geotechnical Engineering
, Thessaloniki, Greece, June 25–28.
24.
Robertson
,
P. K.
,
2009
, “
Interpretation of Cone Penetration Tests—A Unified Approach
,”
Can. Geotech. J.
,
46
(
11
), pp.
1337
1355
.
25.
Papagiannopoulos
,
G. A.
, and
Hatzigeorgiou
,
G. D.
,
2011
, “
On the Use of the Half-Power Bandwidth Method to Estimate Damping in Building Structures
,”
Soil Dyn. Earthquake Eng.
,
31
(
7
), pp.
1075
1079
.
26.
Ellis
,
B.
,
1986
, “
The Significance of Dynamic Soil-Structure Interaction in Tall Buildings
,”
Ice Proc.
,
81
(
2
), pp.
221
242
.Vol.
27.
Kausel
,
E.
,
2010
, “
Early History of Soil-Structure Interaction
,”
Soil Dyn. Earthquake Eng.
,
30
(
9
), pp.
822
832
.
28.
Novak
,
M.
,
1974
, “
Dynamic Stiffness and Damping of Piles
,”
Can. Geotech. J.
,
11
(
4
), pp.
574
598
.
29.
Gazetas
,
G.
, and
Makris
,
N.
,
1991
, “
Dynamic Pile-Soil-Pile Interaction. part i: Analysis of Axial Vibration
,”
Earthquake Eng. Struct. Dyn.
,
20
(
2
), pp.
115
132
.
30.
Balendra
,
T.
,
1993
,
Vibration of Buildings to Wind and Earthquake Loads
,
Springer-Verlag
,
London
.
You do not currently have access to this content.