A method is presented to assess the transmission path of vibration energy and to localize sources or sinks on shells with arbitrary shape, constant thickness, and isotropic material properties. The derived equations of the structural intensity (SI) are based on the Kirchhoff–Love postulates and are formulated in terms of displacements, Lamé parameters, principal curvatures, and their partial derivatives with respect to the principal curvilinear coordinates (PCC). To test the accuracy of the method, two numerical models of thin shells with nonuniform curvatures were developed. The coordinates, displacements, and principal curvature directions (PCDs) at the shell's outer surface were used to estimate the SI vector fields and the energy density at the shell's middle surface. The power estimated from the surface integral of the divergence of the SI over the source was compared to the actual power injected in the shell. The absolute error in both models did not exceed 1%, showing that, in theory, the method is able to handle the high-order spatial derivatives of the displacement and geometry data. The qualitative effect of varying the internal damping in the models on the energy transmission was also investigated.

References

References
1.
Semperlotti
,
F.
, and
Conlon
,
S. C.
,
2010
, “
Structural Damage Identification in Plates Via Nonlinear Structural Intensity Maps
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
EL48
EL53
.
2.
Schmidt
,
W. T.
,
2009
, “
Open-Crack Damage Assessments of Aluminum Panels Using Structural Intensity-Based Techniques
,”
M.Sc. thesis
, The Pennsylvania State University, State College, PA.https://etda.libraries.psu.edu/files/final_submissions/6538
3.
Arruda
,
J. R. F.
, and
Mas
,
P.
,
1998
, “
Localizing Energy Sources and Sinks in Plates Using Power Flow Maps Computed From Laser Vibrometer Measurements
,”
Shock Vib.
,
5
(
4
), pp.
235
253
.
4.
Vuye
,
C.
,
2011
, “
Measurement and Modeling of Sound and Vibration Fields Using a Scanning Laser Doppler Vibrometer
,” Vrije Universiteit Brussel, Brussel, Belgium.
5.
Cho
,
D.
,
Choi
,
T.
,
Kim
,
J.
, and
Vladimir
,
N.
,
2016
, “
Structural Intensity Analysis of Stepped Thickness Rectangular Plates Utilizing the Finite Element Method
,”
Thin-Walled Struct.
,
109
, pp.
1
12
.
6.
Roozen
,
N. B.
,
Guyader
,
J. L.
, and
Glorieux
,
C.
,
2015
, “
Measurement-Based Determination of the irrotational Part of the Structural Intensity by Means of Test Functional Series Expansion
,”
J. Sound Vib.
,
356
, pp.
168
180
.
7.
Lamberti
,
A.
, and
Semperlotti
,
F.
,
2013
, “
Detecting Closing Delaminations in Laminated Composite Plates Using Nonlinear Structural Intensity and Time Reversal Mirrors
,”
Smart Mater. Struct.
,
22
(
12
), p.
125006
.
8.
Romano
,
A. J.
,
Williams
,
E. G.
,
Abraham
,
B.
, and
Williams
,
E. G.
,
1990
, “
A Poynting Vector Formulation for Thin Shells and Plates, and Its Application to Structural Intensity Analysis and Source Localization—Part I: Theory
,”
J. Acoust. Soc. Am.
,
87
(
3
), pp.
1166
1175
.
9.
Gravic
,
L.
, and
Pavic
,
G.
,
1993
, “
Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach
,”
J. Sound Vib.
,
164
(
1
), pp.
29
43
.
10.
Zhang
,
Y.
,
1993
, “
An Experimental Method for Structural Intensity and Source Location
,” Ph.D. thesis, Iowa State University, Ames, IA.
11.
Romano
,
A. J.
,
Williams
,
E. G.
,
Russo
,
K. L.
, and
Schuette
,
L. C.
,
1992
, “
On the Visualization and Analysis of Fluid-Structure Interaction From the Perspective of Instantaneous Intensity
,”
J. Phys. IV France
, pp.
C1-597
C1-600
.
12.
Cho
,
D. S.
,
Kim
,
K. S.
, and
Kim
,
B. H.
,
2010
, “
Structural Intensity Analysis of a Large Container Carrier Under Harmonic Excitations of Propulsion System
,”
Int. J. Nav. Architecture Ocean Eng.
,
2
(
2
), pp.
87
95
.
13.
Rothberg
,
S. J.
,
Allen
,
M. S.
,
Castellini
,
P.
,
Di Maio
,
D.
,
Dirckx
,
J. J. J.
,
Ewins
,
D. J.
,
Halkon
,
B. J.
,
Muyshondt
,
P.
,
Paone
,
N.
,
Ryan
,
T.
,
Steger
,
H.
,
Tomasini
,
E. P.
,
Vanlanduit
,
S.
, and
Vignola
,
J. F.
,
2017
, “
An International Review of Laser Doppler Vibrometry: Making Light Work of Vibration Measurement
,”
Opt. Lasers Eng.
,
99
, pp.
11
22
.
14.
Schreier
,
H.
,
Orteu
,
J.-J.
, and
Sutton
,
M. A.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements
,
Springer
,
NY
.
15.
Pascal
,
J.-C.
,
Carniel
,
X.
,
Chalvidan
,
V.
, and
Smigielski
,
P.
,
1996
, “
Determination of Phase and Magnitude of Vibration for Energy Flow Measurements in a Plate Using Holographic Interferometry
,”
Opt. Lasers Eng.
,
25
(
4–5
), pp.
343
360
.
16.
Van der Jeught
,
S.
, and
Dirckx
,
J. J. J.
,
2015
, “
Real-Time Structured Light Profilometry: A Review
,”
Opt. Lasers Eng.
,
87
, pp.
18
31
.
17.
Ventsel
,
E.
, and
Krauthammer
,
T.
,
2001
,
Thin Plates and Shells: Theory: Analysis and Applications
,
CRC Press
,
Boca Raton, FL
.
18.
Williams
,
E. G.
,
1991
, “
Structural Intensity in Thin Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
89
(
4
), pp.
1615
1622
.
19.
Saijyou
,
K.
, and
Yoshikawa
,
S.
,
1999
, “
Structural Intensity Measurement Technique and Energy Flow of Cylindrical Influences of Shell Based on NAH a Rib on the Acoustic
,”
J. Acoust. Soc. Jpn.
,
20
(
2
), pp.
125
136
.
20.
Junger
,
M. C.
, and
Feit
,
D.
,
1986
,
Sound, Structures, and Their Interaction
,
MIT Press
,
Cambridge, MA
.
21.
Lisle
,
J.
, and
Robinson
,
M.
,
1995
, “
The Mohr Circle for Curvature and Its Application to Fold Description
,”
J. Struct. Geology
,
17
(
5
), pp.
739
750
.
22.
Morse
,
P. M.
, and
Feshbach
,
H.
,
1946
,
Methods of Theoretical Physics
,
Technology Press
, McGraw-Hill, New York.
23.
Kraus
,
H.
,
1967
,
Thin Elastic Shells
,
Wiley
,
New York
.
24.
Soedel
,
W.
,
2004
,
Vibrations of Shells and Plates
,
CRC Press
,
Boca Raton, FL
.
25.
Novozhilov
,
V. V.
,
1959
,
Thin Shell Theory
,
P. Noordhoff
,
Groningen, The Netherlands
.
26.
Boas
,
M. L.
,
2006
,
Mathematical Methods in the Physical Sciences
,
Wiley
, Noida, India.
27.
Hubbard
,
J. H.
, and
Hubbard
,
B. B.
,
2015
,
Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach
,
Matrix Editions
,
New York
.
28.
Lopes
,
H. M. R.
,
Guedes
,
R. M.
, and
Vaz
,
M. P.
,
2006
, “
Techniques in Numerical Differentiation of Experimentally Noisy Data
,”
Fifth International Conference of Mechanical & Materials in Design
, Porto, Portugal, July 24–26, pp.
27
28
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1001.1299&rep=rep1&type=pdf
29.
Morikawa
,
R.
,
Ueha
,
S.
, and
Nakamura
,
K.
,
1996
, “
Error Evaluation of the Structural Intensity Measured With a Scanning Laser Doppler Vibrometer and a k-Space Signal Processing
,”
J. Acoust. Soc. Am.
,
99
(
5
), pp.
2913
2921
.
30.
Pascal
,
J.-C.
,
Li
,
J.-F.
, and
Carniel
,
X.
,
2002
, “
Wavenumber Processing Techniques to Determine Structural Intensity and Its Divergence From Optical Measurements Without Leakage Effects
,”
Shock Vib.
,
9
(
1–2
), pp.
57
66
.
31.
Eck
,
T.
, and
Walsh
,
S. J.
,
2012
, “
Measurement of Vibrational Energy Flow in a Plate With High Energy Flow Boundary Crossing Using Electronic Speckle Pattern Interferometry
,”
Appl. Acoust.
,
73
(
9
), pp.
936
951
.
You do not currently have access to this content.