An adaptive control method with dynamic interpolation is proposed for the active longitudinal vibration control of propulsion shafting systems. In such systems, the dynamics of longitudinal vibration change with the speed-dependent stiffness, which can result in a time-varying system as the shaft speed changes with time. A longitudinal vibration model is established for the investigation of the dynamic interpolating adaptive method (DIAM). In this model, the longitudinal vibration is induced by the disturbance exerted on the propeller (the left mass) and the control force is exerted on the thrust bearing (the right mass), which defines the disturbance channel and the control channel. The proposed DIAM is used to suppress longitudinal vibration transmission from the propeller to the thrust bearing by applying an active force on the right mass. The interpolation technique in DIAM updates the parameter-dependent compensator dynamically and eliminates the influence of parameter-dependent dynamics on the stability of control. Simulation results have demonstrated that the proposed DIAM is effective in suppressing longitudinal vibration of the thrust bearing in comparison to conventional adaptive methods.

References

1.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
,
2010
, “
Acoustic Signature of a Submarine Hull Under Harmonic Excitation
,”
Appl. Acoust.
,
71
(
1
), pp.
17
31
.
2.
Merz
,
S.
,
Kinns
,
R.
, and
Kessissoglou
,
N.
,
2009
, “
Structural and Acoustic Responses of a Submarine Hull Due to Propeller Forces
,”
J. Sound Vib.
,
325
(
1–2
), pp.
266
286
.
3.
Zhao
,
Y.
,
Zhang
,
G.
, and
Li
,
L.
,
2011
, “
Review of Advances on Longitudinal Vibration of Ship Propulsion Shafting and Its Control Technology
,”
Shipbuilding China
,
4
(
32
), pp.
260
269
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZC201104032.htm
4.
Liu
,
N.
,
Li
,
C.
,
Yin
,
C.
,
Dong
,
X.
, and
Hua
,
H.
,
2017
, “
Application of a Dynamic Antiresonant Vibration Isolator to Minimize the Vibration Transmission in Underwater Vehicles
,”
J. Vib. Control
(in press).
5.
Cao
,
Y.
, and
Zhang
,
W.
,
2007
, “
Using Dynamic Absorbers to Reduce Underwater Structural Noise Due to Longitudinal Vibration of Shafting
,”
J. Harbin Eng. Univ.
,
28
(
7
), pp.
747
751
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-HEBG200707007.htm
6.
Dylejko
,
P. G.
,
Kessissoglou
,
N. J. Y. T.
, and
Norwood
,
C. J.
,
2007
, “
Optimization of a Resonance Changer to Minimize the Vibration Transmission in Marine Vessels
,”
J. Sound Vib.
,
300
(
1–2
), pp.
101
116
.
7.
LI
,
Q. Y.
,
2015
, “
Design and Experiment of the Longitudinal Vibration Absorber for Ship Propulsion Shafting Based on Magneto-Rheological Elastomer
,” Master's thesis, Shanghai Jiao Tong University, Shanghai, China.
8.
Liu
,
G.
,
Lu
,
K.
,
Zou
,
D.
,
Xie
,
Z.
,
Rao
,
Z.
, and
Ta
,
N.
,
2017
, “
Development of a Semi-Active Dynamic Vibration Absorber for Longitudinal Vibration of Propulsion Shaft System Based on Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
26
(
7
), p.
075009
.
9.
Merz
,
S.
,
Kessissoglou
,
N.
,
Kinns
,
R.
, and
Marburg
,
S.
,
2013
, “
Passive and Active Control of the Radiated Sound Power From a Submarine Excited by Propeller Forces
,”
J. Ship Res.
,
57
(
1
), pp.
59
71
.
10.
Baz
,
A.
,
Gilheany
,
J.
, and
Steimel
,
P.
,
1990
, “
Active Vibration Control of Propeller Shafts
,”
J. Sound Vib.
,
136
(
3
), pp.
361
372
.
11.
Pan
,
J.
,
Farag
,
N.
,
Lin
,
T.
, and
Juniper
,
R.
,
2002
, “
Propeller Induced Structural Vibration Through the Thrust Bearing
,”
Acoustics Innovation in Acoustics Vibration Annual Conference of the Australian Acoustic Society
,
Adelaide, Australia
, Nov. 13–15, pp.
390
399
.https://pdfs.semanticscholar.org/71e1/1f5c9c31979d932317a2eec96e667fe9286b.pdf
12.
Wang
,
L.
,
Fu
,
Y.
,
Pei
,
S.
, and
Xu
,
H.
,
2016
, “
Theoretical and Experimental Study on the Axial Oil Film Stiffness of Tilting Pad Thrust Bearings
,”
Tribol. Trans.
,
60
(
3
), pp.
419
427
.
13.
Zhang
,
G.
,
Zhao
,
Y.
,
Li
,
T.
, and
Zhu
,
X.
,
2014
, “
Propeller Excitation of Longitudinal Vibration Characteristics of Marine Propulsion Shafting System
,”
Shock Vib.
,
2014
, p.
413592
.
14.
Song
,
Y.
,
Wen
,
J.
,
Yu
,
D.
,
Liu
,
Y.
, and
Wen
,
X.
,
2014
, “
Reduction of Vibration and Noise Radiation of an Underwater Vehicle Due to Propeller Forces Using Periodically Layered Isolators
,”
J. Sound Vib.
,
333
(
14
), pp.
3031
3043
.
15.
Qu
,
Y.
,
Su
,
J.
,
Hua
,
H.
, and
Meng
,
G.
,
2017
, “
Structural Vibration and Acoustic Radiation of Coupled Propeller-Shafting and Submarine Hull System Due to Propeller Forces
,”
J. Sound Vib.
,
401
, pp.
76
93
.
16.
Zhang
,
Z.
,
Rustighi
,
E.
,
Chen
,
Y.
, and
Hua
,
H.
,
2012
, “
Active Control of the Longitudinal-Lateral Vibration of a Shaft-Plate Coupled System
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
61002
.
17.
Bao
,
C.
,
Sas
,
P.
, and
Brussel
,
H. V.
,
1993
, “
Comparison of Two On-Line Identification Algorithms for Active Noise Control
,”
Second Conference Recent Advance in Active Control Sound Vibration
,
Blacksburg, VA
pp.
38
54
.
18.
Hu
,
F.
,
2014
, “
Research on Active Control of the Longitudinal Vibration of Propulsion Shafting Systems
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China.
19.
Niedzwiecki
,
M.
, and
Meller
,
M.
,
2009
, “
A New Approach to Active Noise and Vibration Control—Part I: The Known Frequency Case
,”
IEEE Trans. Signal Process.
,
57
(
9
), pp.
3373
3386
.
20.
Niedzwiecki
,
M.
, and
Meller
,
M.
,
2009
, “
A New Approach to Active Noise and Vibration Control—Part II: The Unknown Frequency Case
,”
IEEE Trans. Signal Process.
,
57
(
9
), pp.
3387
3398
.
21.
Hu
,
Q.
,
Ma
,
H.
,
Fei
,
Q.
,
Geng
,
Q.
, and
Wu
,
Q.
,
2015
, “
Smooth Switching Control for Discrete-Time Multi-Variable Systems With Unknown Time-Varying Parameters
,”
IET Control Theory Appl.
,
9
(
6
), pp.
944
962
.
22.
Hu
,
F.
,
Chen
,
Y.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2012
, “
Tonal Vibration Suppression With a Model-Free Control Method
,”
Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ.
,
226
(
4
), pp.
360
370
.
23.
Fahy
,
F. J.
, and
Gardonio
,
P.
,
2007
,
Sound and Structural Vibration: Radiation, Transmission and Response
,
Academic press
,
Salt Lake City, UT
.
24.
Widrow
,
B.
, and
Walach
,
E.
,
2008
,
Adaptive Inverse Control, Reissue Edition: A Signal Processing Approach
,
Wiley
,
NJ
.
25.
Poulo
,
S. R. D.
,
2008
,
Adaptive Filtering, Algorithms and Practical Implementations
,
Springer Publisher
,
New York
.
26.
De Moor
,
B.
,
1993
, “
The Singular Value Decomposition and Long and Short Spaces of Noisy Matrices
,”
IEEE Trans. Signal Process.
,
41
(
9
), pp.
2826
2838
.
27.
Fan
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2007
, “
Data Processing in Subspace Identification and Modal Parameter Identification of an Arch Bridge
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1674
1689
.
28.
Snyder
,
S. D.
, and
Hansen
,
C. H.
,
1994
, “
The Effect of Transfer Function Estimation Errors on the Filtered-x LMS Algorithm
,”
IEEE Trans. Signal Process.
,
42
(
4
), pp.
950
953
.
29.
Zhou
,
D.
, and
DeBrunner
,
V.
,
2005
, “
ANC Algorithms That Do Not Require Identifying the Secondary Path
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
, pp.
125
128
.
30.
Feng
,
G.
, and
Palaniswami
,
M.
,
2002
, “
A Stable Adaptive Implementation of the Internal Model Principle
,”
IEEE Trans. Autom. Control
,
37
(
8
), pp.
1220
1225
.
31.
Francis
,
B. A.
, and
Wonham
,
W. M.
,
1976
, “
The Internal Model Principle of Control Theory
,”
Automatica
,
12
(
5
), pp.
457
465
.
32.
Zhang
,
Z.
,
Hu
,
F.
, and
Wang
,
J.
,
2010
, “
On Saturation Suppression in Adaptive Vibration Control
,”
J. Sound Vib.
,
329
(
9
), pp.
1209
1214
.
You do not currently have access to this content.