This paper presents a new flexible hub design for the inside-out ceramic turbine (ICT) rotor configuration. This configuration is used in microturbines to integrate ceramic blades in order to increase turbine inlet temperature (TIT), which leads to higher cycle efficiency values. The ICT uses an outer composite rim to load the ceramic blades in compression by converting the centrifugal loads of the blades into hoop stresses in the composite rim. High stresses in the composite rim lead to high radial displacement of the blades. This displacement is compensated by using flexible hub in order to maintain the contact with the blades. However, hub flexibility can lead to rotordynamic problems as heavy hub deformation will induce high stresses in it. Thus, stresses in the hub are induced by both rotordynamics and centrifugation, requiring a multi-objective design process, which has yielded geometries that limited, until now, the blade tip speed to 358 m/s. In this paper, a simplified rotordynamics finite element model of a flexible hub is developed to allow quick design iterations. Using the model, a design space exploration of this hub concept is done while considering centrifugation and rotordynamics. Experimental validation is conducted on a simplified ICT prototype up to 129 krpm, i.e., an equivalent blade tip speed of 390 m/s. Finally, predictions from the experimentally calibrated model show that the tested prototype hub could reach a blade tip speed of 680 m/s.
Skip Nav Destination
Article navigation
February 2019
Research-Article
Design Space Exploration of a Beam Flexible Hub Concept for an Inside-Out Ceramic Turbine Using a Simplified Rotordynamic Finite Element Model
Céderick Landry,
Céderick Landry
Institut Interdisciplinaire D'innovation
Technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Cederick.Landry@USherbrooke.ca
Technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Cederick.Landry@USherbrooke.ca
Search for other works by this author on:
Patrick K. Dubois,
Patrick K. Dubois
Institut Interdisciplinaire D'innovation
Technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Patrick.K.Dubois@USherbrooke.ca
Technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Patrick.K.Dubois@USherbrooke.ca
Search for other works by this author on:
Jean-Sébastien Plante,
Jean-Sébastien Plante
Faculté de Genie,
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1,
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1,
Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Search for other works by this author on:
François Charron,
François Charron
Faculté de Génie,
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1,
e-mail: Francois.R.Charron@USherbrooke.ca
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1,
Canada
e-mail: Francois.R.Charron@USherbrooke.ca
Search for other works by this author on:
Mathieu Picard
Mathieu Picard
Faculté de Génie,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Search for other works by this author on:
Céderick Landry
Institut Interdisciplinaire D'innovation
Technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Cederick.Landry@USherbrooke.ca
Technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Cederick.Landry@USherbrooke.ca
Patrick K. Dubois
Institut Interdisciplinaire D'innovation
Technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Patrick.K.Dubois@USherbrooke.ca
Technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Patrick.K.Dubois@USherbrooke.ca
Jean-Sébastien Plante
Faculté de Genie,
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1,
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1,
Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
François Charron
Faculté de Génie,
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1,
e-mail: Francois.R.Charron@USherbrooke.ca
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1,
Canada
e-mail: Francois.R.Charron@USherbrooke.ca
Mathieu Picard
Faculté de Génie,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received October 6, 2017; final manuscript received July 2, 2018; published online August 13, 2018. Assoc. Editor: Patrick S. Keogh.
J. Vib. Acoust. Feb 2019, 141(1): 011007 (10 pages)
Published Online: August 13, 2018
Article history
Received:
October 6, 2017
Revised:
July 2, 2018
Citation
Landry, C., Dubois, P. K., Plante, J., Charron, F., and Picard, M. (August 13, 2018). "Design Space Exploration of a Beam Flexible Hub Concept for an Inside-Out Ceramic Turbine Using a Simplified Rotordynamic Finite Element Model." ASME. J. Vib. Acoust. February 2019; 141(1): 011007. https://doi.org/10.1115/1.4040807
Download citation file:
416
Views
Get Email Alerts
Cited By
Numerical Analysis of the Tread Grooves’ Acoustic Resonances for the Investigation of Tire Noise
J. Vib. Acoust (August 2024)
Related Articles
Rotordynamics of a Highly Flexible Hub for Inside-Out Ceramic Turbine Application: Finite Element Modeling and Experimental Validation
J. Vib. Acoust (February,2018)
Evaluation of Foil Bearing Performance and Nonlinear Rotordynamics of 120 kW Oil-Free Gas Turbine Generator
J. Eng. Gas Turbines Power (March,2014)
Progress on the European Gas Turbine Program “AGATA”
J. Eng. Gas Turbines Power (January,1998)
System-Level Performance of Microturbines With an Inside-Out Ceramic Turbine
J. Eng. Gas Turbines Power (June,2017)
Related Chapters
Conclusions and Future Perspectives
High Frequency Piezo-Composite Micromachined Ultrasound Transducer Array Technology for Biomedical Imaging
Introduction
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design