Existing analytical models for railway tracks consider only one rail supported by a continuous foundation or periodic concentrated supports (called the periodically supported beam). This paper presents an analytical model for a railway track which includes two rails connected by sleepers. By considering the sleepers as Euler–Bernoulli beams resting on a Kelvin–Voigt foundation, we can obtain a dynamic equation for a sleeper subjected to the reaction forces of the rails. Then, by using the relation between the rail forces and displacements from the periodically supported beam model, we can calculate the sleeper responses with the help of Green's function. The numerical applications show that the sleeper is in flexion where the displacement at the middle of the sleeper is greater than those at the rail seats. Moreover, the deformed shape of the sleeper is nonsymmetric when the loads on the two rails are different. The model result agrees well with measurements performed using instrumented sleeper in situ

References

References
1.
Mead
,
D.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.
2.
Mead
,
D.
, and
Yaman
,
Y.
,
1991
, “
The Response of Infinite Periodic Beams to Point Harmonic Forces: A Flexural Wave Analysis
,”
J. Sound Vib.
,
144
(
3
), pp.
507
529
.
3.
Mead
,
D.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964-1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
4.
Metrikine
,
A.
, and
Popp
,
K.
,
1999
, “
Vibration of a Periodically Supported Beam on an Elastic Half-Space
,”
Eur. J. Mech.—A/Solids
,
18
(
4
), pp.
679
701
.
5.
Vostroukhov
,
A.
, and
Metrikine
,
A.
,
2003
, “
Periodically Supported Beam on a Visco-Elastic Layer as a Model for Dynamic Analysis of a High-Speed Railway Track
,”
Int. J. Solids Struct.
,
40
(
21
), pp.
5723
5752
.
6.
Sheng
,
X.
,
Jones
,
C.
, and
Thompson
,
D.
,
2005
, “
Responses of Infinite Periodic Structures to Moving or Stationary Harmonic Loads
,”
J. Sound Vib.
,
282
(
1–2
), pp.
125
149
.
7.
Sheng
,
X.
,
Li
,
M.
,
Jones
,
C.
, and
Thompson
,
D.
,
2007
, “
Using the Fourier-Series Approach to Study Interactions Between Moving Wheels and a Periodically Supported Rail
,”
J. Sound Vib.
,
303
(
3–5
), pp.
873
894
.
8.
Hoang
,
T.
,
Duhamel
,
D.
,
Foret
,
G.
,
Yin
,
H.
,
Joyez
,
P.
, and
Caby
,
R.
,
2017
, “
Calculation of Force Distribution for a Periodically Supported Beam Subjected to Moving Loads
,”
J. Sound Vib.
,
388
, pp.
327
338
.
9.
Nordborg
,
A.
,
1998
, “
Vertical Rail Vibrations: Parametric Exication
,”
Acustica
,
84
, pp.
289
300
.http://www.ingentaconnect.com/contentone/dav/aaua/1998/00000084/00000002/art00010
10.
Hoang
,
T.
,
Duhamel
,
D.
,
Foret
,
G.
,
Yin
,
H.-P.
, and
Cumunel
,
G.
,
2016
, “
Response of a Periodically Supported Beam on a Nonlinear Foundation Subjected to Moving Loads
,”
Nonlinear Dyn.
,
86
(
2
), pp.
953
961
.
11.
Fryba
,
L.
,
1972
,
Vibration of Solids and Structures Under Moving Load
(Mechanics of Structural Systems, Vol. 1), Springer, Dordrecht, The Netherlands.
12.
Nguyen
,
V.-H.
, and
Duhamel
,
D.
,
2006
, “
Finite Element Procedures for Nonlinear Structures in Moving Coordinates—Part 1: Infinite Bar Under Moving Axial Loads
,”
Comput. Struct.
,
84
(
21
), pp.
1368
1380
.
13.
Nguyen
,
V.-H.
, and
Duhamel
,
D.
,
2008
, “
Finite Element Procedures for Nonlinear Structures in Moving Coordinates—Part II: Infinite Beam Under Moving Harmonic Loads
,”
Comput. Struct.
,
86
(
21–22
), pp.
2056
2063
.
14.
Ding
,
H.
,
Chen
,
L.-Q.
, and
Yang
,
S.-P.
,
2012
, “
Convergence of Galerkin Truncation for Dynamic Response of Finite Beams on Nonlinear Foundations Under a Moving Load
,”
J. Sound Vib.
,
331
(
10
), pp.
2426
2442
.
15.
Gavrić
,
L.
,
1995
, “
Computation of Propagative Waves in Free Rail Using a Finite Element Technique
,”
J. Sound Vib.
,
185
(
3
), pp.
531
543
.
16.
Thompson
,
D.
,
1997
, “
Experimental Analysis of Wave Propagation in Railway Tracks
,”
J. Sound Vib.
,
203
(
5
), pp.
867
888
.
17.
Kostovasilis
,
D.
,
Thompson
,
D.
, and
Hussein
,
M.
,
2017
, “
A Semi-Analytical Beam Model for the Vibration of Railway Tracks
,”
J. Sound Vib.
,
393
, pp.
321
337
.
18.
Kostovasilis
,
D.
,
2017
, “
Analytical Modelling of the Vibration of Railway Track
,”
Ph.D. thesis
, University Southampton, Southampton, UK.https://eprints.soton.ac.uk/id/eprint/413811
19.
Di Mino
,
G.
,
Di Liberto
,
M.
,
Maggiore
,
C.
, and
Noto
,
S.
,
2012
, “
A Dynamic Model of Ballasted Rail Track With Bituminous Sub-Ballast Layer
,”
Procedia—Soc. Behav. Sci.
,
53
, pp.
366
378
.
20.
Aikawa
,
A.
,
2015
, “
Dynamic Characterisation of a Ballast Layer Subject to Traffic Impact Loads Using Three-Dimensional Sensing Stones and a Special Sensing Sleeper
,”
Constr. Build. Mater.
,
92
, pp.
23
30
.
21.
Grassie
,
S.
,
1995
, “
Dynamic Modelling of Concrete Railway Sleepers
,”
J. Sound Vib.
,
187
(
5
), pp.
799
813
.
22.
Esmaeili
,
M.
,
Hosseini
,
S.
, and
Sharavi
,
M.
,
2016
, “
Experimental Assessment of Dynamic Lateral Resistance of Railway Concrete Sleeper
,”
Soil Dyn. Earthquake Eng.
,
82
, pp.
40
54
.
23.
Laryea
,
S.
,
Safari Baghsorkhi
,
M.
,
Ferellec
,
J.-F.
,
McDowell
,
G.
, and
Chen
,
C.
,
2014
, “
Comparison of Performance of Concrete and Steel Sleepers Using Experimental and Discrete Element Methods
,”
Transp. Geotech.
,
1
(
4
), pp.
225
240
.
24.
Kumaran
,
G.
,
Menon
,
D.
, and
Krishnan Nair
,
K.
,
2003
, “
Dynamic Studies of Railtrack Sleepers in a Track Structure System
,”
J. Sound Vib.
,
268
(
3
), pp.
485
501
.
25.
Arab
,
A. A.
,
Badie
,
S. S.
, and
Manzari
,
M. T.
,
2011
, “
A Methodological Approach for Finite Element Modeling of Pretensioned Concrete Members at the Release of Pretensioning
,”
Eng. Struct.
,
33
(
6
), pp.
1918
1929
.
26.
Mohamad
,
A.
,
1994
, “
Tables of Green's Functions for the Theory of Beam Vibrations With General Intermediate Appendages
,”
Int. J. Solids Struct.
,
31
(
2
), pp.
257
268
.
27.
Foda
,
M.
, and
Abduljabbar
,
Z.
,
1998
, “
A Dynamic Green Function Formulation for the Response of a Beam Structure to a Moving Mass
,”
J. Sound Vib.
,
210
(
3
), pp.
295
306
.
28.
Zauderer
,
E.
,
1989
,
Partial Differential Equations of Applied Mathematics
, 3rd ed.,
Wiley
, Hoboken, NJ.
29.
Azoh
,
T. S.
,
Nzie
,
W.
,
Djeumako
,
B.
, and
Fotsing
,
B. S.
,
2014
, “
Modeling of Train Track Vibrations for Maintenance Perspectives: Application
,”
Eur. Sci. J.
,
10
(
21
), pp.
260
275
.https://eujournal.org/index.php/esj/article/view/3858/3674
30.
Roach
,
G. F.
,
1992
,
Green's Functions
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
31.
Stakgold
,
I.
,
1979
,
Green's Functions and Boundary Value Problems, Pure and Applied Mathematics
, 3rd ed.,
Wiley
, New York.
You do not currently have access to this content.