We present a novel beam-based vibration energy harvester, and use a structural tailoring concept to tune its natural frequencies. Using a solution of the Euler–Bernoulli beam theory equations, verified with finite element (FE) solutions of shell theory equations, we show that introducing folds or creases along the span of a slender beam, varying the fold angle at a crease, and changing the crease location helps tune the beam natural frequencies to match an external excitation frequency and maximize the energy harvested. For a beam clamped at both ends, the first frequency can be increased by 175% with a single fold. With two folds, selective frequencies can be tuned, leaving others unchanged. The number of folds, their locations, and the fold angles act as tuning parameters that provide high sensitivity and controllability of the frequency response of the harvester. The analytical model can be used to quickly optimize designs with multiple folds for anticipated external frequencies.

References

References
1.
Williams
,
C.
, and
Yates
,
R. B.
,
1996
, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators A
,
52
(
1–3
), pp.
8
11
.
2.
Cook-Chennault
,
K.
,
Thambi
,
N.
, and
Sastry
,
A.
,
2008
, “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
17
(
4
), p.
043001
.
3.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
, Hoboken, NJ.
4.
Mitcheson
,
P. D.
,
Miao
,
P.
,
Stark
,
B. H.
,
Yeatman
,
E.
,
Holmes
,
A.
, and
Green
,
T.
,
2004
, “
MEMS Electrostatic Micropower Generator for Low Frequency Operation
,”
Sens. Actuators A
,
115
(
2–3
), pp.
523
529
.
5.
El-Hami
,
M.
,
Glynne-Jones
,
P.
,
White
,
N.
,
Hill
,
M.
,
Beeby
,
S.
,
James
,
E.
,
Brown
,
A.
, and
Ross
,
J.
,
2001
, “
Design and Fabrication of a New Vibration-Based Electromechanical Power Generator
,”
Sens. Actuators A
,
92
(
1–3
), pp.
335
342
.
6.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2005
, “
Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
799
807
.
7.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2009
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.
8.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Marioli
,
D.
, and
Taroni
,
A.
,
2008
, “
Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,”
Sens. Actuators A
,
142
(
1
), pp.
329
335
.
9.
Cornwell
,
P.
,
Goethal
,
J.
,
Kowko
,
J.
, and
Damianakis
,
M.
,
2005
, “
Enhancing Power Harvesting Using a Tuned Auxiliary Structure
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
825
834
.
10.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D
,
239
(
10
), pp.
640
653
.
11.
Leland
,
E. S.
, and
Wright
,
P. K.
,
2006
, “
Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload
,”
Smart Mater. Struct.
,
15
(
5
), pp.
1413
1420
.
12.
Cheng
,
Y.
,
Wu
,
N.
, and
Wang
,
Q.
,
2017
, “
An Efficient Piezoelectric Energy Harvester With Frequency Self-Tuning
,”
J. Sound Vib.
,
396
, pp.
69
82
.
13.
Peters
,
C.
,
Maurath
,
D.
,
Schock
,
W.
,
Mezger
,
F.
, and
Manoli
,
Y.
,
2009
, “
A Closed-Loop Wide-Range Tunable Mechanical Resonator for Energy Harvesting Systems
,”
J. Micromech. Microeng.
,
19
(
9
), p.
094004
.
14.
Wu
,
X.
,
Lin
,
J.
,
Kato
,
S.
,
Zhang
,
K.
,
Ren
,
T.
, and
Liu
,
L.
,
2008
, “
A Frequency Adjustable Vibration Energy Harvester
,”
PowerMEMS
, Sendai, Japan, Nov. 9–12, pp.
245
248
.http://cap.ee.ic.ac.uk/~pdm97/powermems/2008/pdfs/245-248%20Wu,%20X.pdf
15.
Challa
,
V. R.
,
Prasad
,
M.
,
Shi
,
Y.
, and
Fisher
,
F. T.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
17
(
1
), p.
015035
.
16.
Roundy
,
S.
, and
Zhang
,
Y.
,
2005
, “
Toward Self-Tuning Adaptive Vibration-Based Microgenerators
,”
Proc. SPIE
,
5649
, pp. 373–385.
17.
Nayfeh
,
A.
,
Balachandran
,
B.
,
Colbert
,
M.
, and
Nayfeh
,
M.
,
1989
, “
An Experimental Investigation of Complicated Responses of a Two-Degree-of-Freedom Structure
,”
ASME J. Appl. Mech.
,
56
(
4
), pp.
960
967
.
18.
Cao
,
D.-X.
,
Zhang
,
W.
, and
Yao
,
M.-H.
,
2010
, “
Analytical and Experimental Studies on Nonlinear Characteristics of an L-Shape Beam Structure
,”
Acta Mech. Sin.
,
26
(
6
), pp.
967
976
.
19.
Zhang
,
W.
,
Hu
,
W.
,
Cao
,
D.
, and
Yao
,
M.
,
2016
, “
Vibration Frequencies and Modes of a Z-Shaped Beam With Variable Folding Angles
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041004
.
20.
Bhaskar
,
K.
, and
Pydah
,
A.
,
2014
, “
An Elasticity Approach for Simply-Supported Isotropic and Orthotropic Stiffened Plates
,”
Int. J. Mech. Sci.
,
89
, pp.
21
30
.
21.
Pydah
,
A.
, and
Bhaskar
,
K.
,
2015
, “
Accurate Discrete Modelling of Stiffened Isotropic and Orthotropic Rectangular Plates
,”
Thin-Walled Struct.
,
97
, pp.
266
278
.
22.
Pydah
,
A.
, and
Bhaskar
,
K.
,
2016
, “
An Accurate Discrete Model for Web-Core Sandwich Plates
,”
J. Sandwich Struct. Mater.
,
18
(
4
), pp.
474
500
.
23.
Pydah
,
A.
, and
Bhaskar
,
K.
,
2017
, “
Accurate Analytical Solutions for Shear-Deformable Web-Core Sandwich Plates
,”
J. Sandwich Struct. Mater.
,
19
(
5
), pp.
616
643
.
24.
Pydah
,
A.
, and
Batra
,
R.
,
2018
, “
Analytical Solution for Cylindrical Bending of Two-Layered Corrugated and Webcore Sandwich Panels
,”
Thin-Walled Struct.
,
123
, pp.
509
519
.
25.
ABAQUS
,
2014
, “
6.14 Documentation
,” Dassault Systèmes Simulia Corporation, Providence, RI.
26.
Liew
,
K.
,
Hung
,
K.
, and
Lim
,
M.
,
1995
, “
Three-Dimensional Vibration of Rectangular Plates: Effects of Thickness and Edge Constraints
,”
J. Sound Vib.
,
182
(
5
), pp.
709
727
.
27.
Batra
,
R.
, and
Aimmanee
,
S.
,
2003
, “
Missing Frequencies in Previous Exact Solutions of Free Vibrations of Simply Supported Rectangular Plates
,”
J. Sound Vib.
,
265
(
4
), pp.
887
896
.
28.
Qian
,
L.
,
Batra
,
R.
, and
Chen
,
L.
,
2003
, “
Free and Forced Vibrations of Thick Rectangular Plates Using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Petrov-Galerkin (MLPG) Method
,”
Comput. Model. Eng. Sci.
,
4
(
5
), pp.
519
534
.https://www.researchgate.net/publication/255604893_Free_and_Forced_Vibrations_of_Thick_Rectangular_Plates_using_Higher-Orer_Shear_and_Normal_Deformable_Plate_Theory_and_Meshless_Petrov-Galerkin_MLPG_Method
29.
Batra
,
R.
, and
Aimmanee
,
S.
,
2005
, “
Vibrations of Thick Isotropic Plates With Higher Order Shear and Normal Deformable Plate Theories
,”
Comput. Struct.
,
83
(
12–13
), pp.
934
955
.
30.
Batra
,
R.
,
Liang
,
X.
, and
Yang
,
J.
,
1996
, “
Shape Control of Vibrating Simply Supported Rectangular Plates
,”
AIAA J.
,
34
(
1
), pp.
116
122
.
31.
Vel
,
S. S.
, and
Batra
,
R.
,
2001
, “
Analysis of Piezoelectric Bimorphs and Plates With Segmented Actuators
,”
Thin-Walled Struct.
,
39
(
1
), pp.
23
44
.
32.
Ghosh
,
K.
, and
Batra
,
R. C.
,
1995
, “
Shape Control of Plates Using Piezoceramic Elements
,”
AIAA J.
,
33
(
7
), pp.
1354
1357
.
You do not currently have access to this content.