The present paper investigates friction-induced self-excited vibration of a bistable compliant mechanism. A pseudo-rigid-body representation of the mechanism is used containing a hardening nonlinear spring and a viscous damper. The mass is suspended from above with the spring-damper combination leading to the addition of geometric nonlinearity in the equation of motion and position- and velocity-dependent normal contact force. Friction input provided by a moving belt in contact with the mass. An exponentially decaying function of sliding velocity describes the friction coefficient and, thereby, incorporates Stribeck effect of friction. Eigenvalue analysis is employed to investigate the local stability of the steady-state fixed points. It is observed that the oscillator experiences pitchfork and Hopf bifurcations. The effects of the spring nonlinearity and precompression, viscous damping, belt velocity, and the applied normal force on the number, position, and stability of the equilibrium points are investigated. Global system behavior is studied by establishing trajectory maps of the system. Critical belt speed is derived analytically and shown to be only the result of Stribeck effect of friction. It is found that one equilibrium point dominates the steady-state response for very low damping and negligible spring nonlinearity. The presence of damping and/or spring nonlinearity tends to diminish this dominance.

References

References
1.
Berger
,
E.
,
2002
, “
Friction Modeling for Dynamic System Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
6
), p.
535
.
2.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.
3.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.
4.
Popp
,
K.
, and
Stelter
,
P.
,
1990
, “
Stick-Slip Vibrations and Chaos
,”
Philos. Trans. Phys. Sci. Eng.
,
332
(
1624
), pp.
89
105
.
5.
Oestreich
,
M.
,
Hinrichs
,
N.
, and
Popp
,
K.
,
1996
, “
Bifurcation and Stability Analysis for a Non-Smooth Friction Oscillator
,”
Arch. Appl. Mech.
,
66
(
5
), pp.
301
314
.
6.
Hetzler
,
H.
,
Schwarzer
,
D.
, and
Seemann
,
W.
,
2007
, “
Analytical Investigation of Steady-State Stability and Hopf-Bifurcations Occurring in Sliding Friction Oscillators With Application to Low-Frequency Disc Brake Noise
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
1
), pp.
83
99
.
7.
Le Rouzic
,
J.
,
Le Bot
,
A.
,
Perret-Liaudet
,
J.
,
Guibert
,
M.
,
Rusanov
,
A.
,
Douminge
,
L.
,
Bretagnol
,
F.
, and
Mazuyer
,
D.
,
2013
, “
Friction-Induced Vibration by Stribeck's Law: Application to Wiper Blade Squeal Noise
,”
Tribol. Lett.
,
49
(
3
), pp.
563
572
.
8.
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2006
, “
Stick-Slip and Bit-Bounce Interaction in Oil-Well Drillstrings
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), p.
268
.
9.
Ostermeyer
,
G. P.
,
2009
, “
On Tangential Friction Induced Vibrations in Brake Systems
,”
Non-Smooth Problems in Vehicle Systems Dynamics
,
Springer
, Berlin, pp.
101
111
.
10.
Li
,
Z. X.
,
Cao
,
Q. J.
, and
Alain
,
L.
,
2015
, “
Complex Dynamics of an Archetypal Self-Excited SD Oscillator Driven by Moving Belt Friction
,”
Chin. Phys. B
,
25
(
1
), pp. 1–9.
11.
Sinou
,
J.-J.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
Analysis of Friction and Instability by the Centre Manifold Theory for a Non-Linear Sprag-Slip Model
,”
J. Sound Vib.
,
265
(
3
), pp.
527
559
.
12.
Hoffmann
,
N.
,
Bieser
,
S.
, and
Gaul
,
L.
,
2004
, “
Harmonic Balance and Averaging Techniques for Stick-Slip Limit-Cycle Determination in Mode-Coupling Friction Self-Excited Systems
,”
Tech. Mech.
,
24
(3–4), pp.
185
197
.
13.
Galvanetto
,
U.
, and
Bishop
,
S. R.
,
1999
, “
Dynamics of a Simple Damped Oscillator Undergoing Stick-Slip Vibrations
,”
Meccanica
,
34
(
5
), pp.
337
347
.
14.
Galvanetto
,
U.
,
2001
, “
An Example of a Non-Smooth Fold Bifurcation
,”
Meccanica
,
36
(
2
), pp.
229
233
.
15.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
16.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
.
17.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
989
.
18.
Kota
,
S.
,
Hetrick
,
J. A.
,
Osborn
,
R.
,
Paul
,
D.
,
Pendleton
,
E.
,
Flick
,
P.
, and
Tilmann
,
C.
,
2003
, “
Design and Application of Compliant Mechanisms for Morphing Aircraft Structures
,”
Proc. SPIE
,
5054
, pp.
24
34
.
19.
Opdahl
,
P. G.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
1998
, “
An Investigation Into Compliant Bistable Mechanisms
,”
ASME
Paper No. DETC98/MECH-5914.
20.
Farhang
,
K.
, and
Lim
,
A.-L.
,
2005
, “
A Non-Phenomenological Account of Friction/Vibration Interaction in Rotary Systems
,”
ASME J. Tribol.
,
128
(
1
), pp.
103
112
.
You do not currently have access to this content.