Sandwich structures that are embedded with cellular materials show excellent performance in terms of mechanics, electromagnetics, and acoustics. In this paper, sandwich panels with hybrid cellular cores of hexagonal, re-entrant hexagonal, and rectangular configurations along the panel surface are designed. The spectral element method (SEM) is applied to accurately predict the dynamic performance of the sandwich panels with a reduced number of elements and the system scale within a wide frequency range. The mechanical performance and the acoustic performance at normal incidence of the proposed structures are investigated and compared with conventional honeycomb panels with fixed cell geometries. It was found that the bending stiffness, fundamental frequencies, and sound transmission loss (STL) of the presented sandwich panels can be effectively changed by adjusting their hybrid cellular core configurations. Shape optimization designs of a hybrid cellular core for maximum STL are presented for specified tonal and frequency band cases at normal incidence. Hybrid sandwich panels increase the sound insulation property by 24.7%, 20.6%, and 109.6% for those cases, respectively, compared with conventional panels in this study. These results indicate the potential of sandwich structures with hybrid cellular cores in acoustic attenuation applications. Hybrid cellular cores can lead to inhomogeneous mechanical performance and constitute a broader platform for the optimum mechanical and acoustic design of sandwich structures.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
2.
Kee Paik
,
J.
,
Thayamballi
,
A. K.
, and
Sung Kim
,
G.
,
1999
, “
The Strength Characteristics of Aluminum Honeycomb Sandwich Panels
,”
Thin-Walled Struct.
,
35
(
3
), pp.
205
231
.
3.
Petras
,
A.
, and
Sutcliffe
,
M. P. F.
,
1999
, “
Indentation Resistance of Sandwich Beams
,”
Compos. Struct.
,
46
(
4
), pp.
413
424
.
4.
Whitty
,
J. P. M.
,
Alderson
,
A.
,
Myler
,
P.
, and
Kandola
,
B.
,
2003
, “
Towards the Design of Sandwich Panel Composites With Enhanced Mechanical and Thermal Properties by Variation of the in-Plane Poisson's Ratios
,”
Compos. Part A
,
34
(
6
), pp.
525
534
.
5.
Gu
,
S.
,
Lu
,
T. J.
, and
Evans
,
A. G.
,
2001
, “
On the Design of Two-Dimensional Cellular Metals for Combined Heat Dissipation and Structural Load Capacity
,”
Int. J. Heat Mass Transfer
,
44
(
11
), pp.
2163
2175
.
6.
Zou
,
Z.
,
Reid
,
S. R.
,
Tan
,
P. J.
,
Li
,
S.
, and
Harrigan
,
J. J.
,
2009
, “
Dynamic Crushing of Honeycombs and Features of Shock Fronts
,”
Int. J. Impact Eng.
,
36
(
1
), pp.
165
176
.
7.
Schultz
,
J.
,
Griese
,
D.
,
Ju
,
J.
,
Shankar
,
P.
,
Summers
,
J. D.
, and
Thompson
,
L.
,
2012
, “
Design of Honeycomb Mesostructures for Crushing Energy Absorption
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071004
.
8.
D'Alessandro
,
V.
,
Petrone
,
G.
,
Franco
,
F.
, and
De Rosa
,
S.
,
2013
, “
A Review of the Vibroacoustics of Sandwich Panels: Models and Experiments
,”
J. Sandwich Struct. Mater.
,
15
(
5
), pp.
541
582
.
9.
Zhang
,
Q.
,
Yang
,
X.
,
Li
,
P.
,
Huang
,
G.
,
Feng
,
S.
,
Shen
,
C.
,
Han
,
B.
,
Zhang
,
X.
,
Jin
,
F.
,
Xu
,
F.
, and
Lu
,
T. J.
,
2015
, “
Bioinspired Engineering of Honeycomb Structure-Using Nature to Inspire Human Innovation
,”
Prog. Mater. Sci.
,
74
, pp.
332
400
.
10.
Kurtze
,
G.
, and
Watters
,
B. G.
,
1959
, “
New Wall Design for High Transmission Loss or High Damping
,”
J. Acoust. Soc. Am.
,
31
(
6
), pp.
739
748
.
11.
Ford
,
R. D.
,
Lord
,
P.
, and
Walker
,
A. W.
,
1967
, “
Sound Transmission Through Sandwich Constructions
,”
J. Sound Vib.
,
5
(
1
), pp.
9
21
.
12.
Smolenski
,
C. P.
, and
Krokosky
,
E. M.
,
1973
, “
Dilational Mode Sound Transmission in Sandwich Panels
,”
J. Acoust. Soc. Am.
,
54
(
6
), pp.
1449
1457
.
13.
Moore
,
J. A.
, and
Lyon
,
R. H.
,
1991
, “
Sound Transmission Loss Characteristics of Sandwich Panel Constructions
,”
J. Acoust. Soc. Am.
,
89
(
2
), pp.
777
791
.
14.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
.
15.
El-Raheb
,
M.
,
1997
, “
Frequency Response of a Two-Dimensional Truss-Like Periodic Panel
,”
J. Acoust. Soc. Am.
,
101
(
6
), pp.
3457
3465
.
16.
El-Raheb
,
M.
, and
Wagner
,
P.
,
1997
, “
Transmission of Sound Across a Truss-Like Periodic Panel: 2-D Analysis
,”
J. Acoust. Soc. Am.
,
102
(
4
), pp.
2176
2183
.
17.
Griese
,
D.
,
Summers
,
J.
, and
Thompson
,
L.
,
2015
, “
The Effect of Honeycomb Core Geometry on the Sound Transmission Performance of Sandwich Panels
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021011
.
18.
Moosavimehr
,
S. E.
, and
Phani
,
A. S.
,
2017
, “
Sound Transmission Loss Characteristics of Sandwich Panels With a Truss Lattice Core
,”
J. Acoust. Soc. Am.
,
141
(
4
), pp.
2921
2932
.
19.
Kim
,
Y. J.
, and
Han
,
J. H.
,
2013
, “
Identification of Acoustic Characteristics of Honeycomb Sandwich Composite Panels Using Hybrid Analytical/Finite Element Method
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011006
.
20.
Ruzzene
,
M.
,
2004
, “
Vibration and Sound Radiation of Sandwich Beams With Honeycomb Truss Core
,”
J. Sound Vib.
,
277
(
4–5
), pp.
741
763
.
21.
Wang
,
T. A.
,
Li
,
S.
,
Rajaram
,
S.
, and
Nutt
,
S. R.
,
2010
, “
Predicting the Sound Transmission Loss of Sandwich Panels by Statistical Energy Analysis Approach
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011004
.
22.
Grosveld
,
F. W.
,
Palumbo
,
D. L.
,
Klos
,
J.
, and
Castle
,
W. D.
,
2006
, “
Finite Element Development of Honeycomb Panel Configurations With Improved Transmission Loss
,”
35th International Congress and Exposition on Noise Control Engineering
(
INTER-NOISE
), Honolulu, HI, Dec. 3–6, p.
15
.
23.
Palumbo
,
D. L.
, and
Klos
,
J.
,
2009
, “
Development of Quiet Honeycomb Panels
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA/TM-2009-215954
.
24.
Thamburaj
,
P.
, and
Sun
,
J. Q.
,
2002
, “
Optimization of Anisotropic Sandwich Beams for Higher Sound Transmission Loss
,”
J. Sound Vib.
,
254
(
1
), pp.
23
36
.
25.
Denli
,
H.
, and
Sun
,
J. Q.
,
2007
, “
Structural-Acoustic Optimization of Sandwich Structures With Cellular Cores for Minimum Sound Radiation
,”
J. Sound Vib.
,
301
(
1–2
), pp.
93
105
.
26.
Franco
,
F.
,
Cunefare
,
K. A.
, and
Ruzzene
,
M.
,
2007
, “
Structural-Acoustic Optimization of Sandwich Panels
,”
ASME J. Vib. Acoust.
,
129
(
3
), pp.
330
340
.
27.
Galgalikar
,
R.
, and
Thompson
,
L.
,
2016
, “
Design Optimization of Honeycomb Core Sandwich Panels for Maximum Sound Transmission Loss
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051005
.
28.
Yang
,
H.
,
Li
,
H.
, and
Zheng
,
H.
,
2016
, “
A Structural-Acoustic Optimization of Two-Dimensional Sandwich Plates With Corrugated Cores
,”
J. Vib. Control
,
23
(
18
), pp.
3007
3022
.
29.
Wu
,
J.
,
2016
, “
Topology Optimization Studies for Light Weight Acoustic Panels
,”
Master's dissertation
, University of Toronto, Toronto, ON.
30.
Claeys
,
C.
,
Deckers
,
E.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2016
, “
A Lightweight Vibro-Acoustic Metamaterial Demonstrator: Numerical and Experimental Investigation
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
853
880
.
31.
Zhang
,
X.
, and
Yang
,
D.
,
2016
, “
Numerical and Experimental Studies of a Light-Weight Auxetic Cellular Vibration Isolation Base
,”
Shock Vib.
,
2016
, pp.
1
16
.
32.
Zhang
,
X.
, and
Yang
,
D.
,
2016
, “
Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs
,”
Materials
,
9
(
11
), p.
900
.
33.
Lim
,
T. C.
,
2002
, “
Functionally Graded Beam for Attaining Poisson-Curving
,”
J. Mater. Sci. Lett.
,
21
(
24
), pp.
1899
1901
.
34.
Lira
,
C.
, and
Scarpa
,
F.
,
2010
, “
Transverse Shear Stiffness of Thickness Gradient Honeycombs
,”
Compos. Sci. Technol.
,
70
(
6
), pp.
930
936
.
35.
Lira
,
C.
,
Scarpa
,
F.
, and
Rajasekaran
,
R.
,
2011
, “
A Gradient Cellular Core for Aeroengine Fan Blades Based on Auxetic Configurations
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
907
917
.
36.
Hou
,
Y.
,
Tai
,
Y. H.
,
Lira
,
C.
,
Scarpa
,
F.
,
Yates
,
J. R.
, and
Gu
,
B.
,
2013
, “
The Bending and Failure of Sandwich Structures With Auxetic Gradient Cellular Cores
,”
Compos. Part A
,
49
, pp.
119
131
.
37.
Hou
,
Y.
,
Neville
,
R.
,
Scarpa
,
F.
,
Remillat
,
C.
,
Gu
,
B.
, and
Ruzzene
,
M.
,
2014
, “
Graded Conventional-Auxetic Kirigami Sandwich Structures: Flatwise Compression and Edgewise Loading
,”
Compos. Part B
,
59
, pp.
33
42
.
38.
Boldrin
,
L.
,
Hummel
,
S.
,
Scarpa
,
F.
,
Di Maio
,
D.
,
Lira
,
C.
,
Ruzzene
,
M.
,
Remillat
,
C. D. L.
,
Lim
,
T. C.
,
Rajasekaran
,
R.
, and
Patsias
,
S.
,
2016
, “
Dynamic Behaviour of Auxetic Gradient Composite Hexagonal Honeycombs
,”
Compos. Struct.
,
149
, pp.
114
124
.
39.
Lim
,
T. C.
,
2016
, “
A 3D Auxetic Material Based on Intersecting Double Arrowheads
,”
Phys. Status Solidi
,
253
(
7
), pp.
1252
1260
.
40.
Yang
,
C.
,
Vora
,
H. D.
, and
Chang
,
Y.
,
2018
, “
Behavior of Auxetic Structures Under Compression and Impact Forces
,”
Smart Mater. Struct.
,
27
(
2
), p.
025012
.
41.
Wu
,
Z. J.
,
Li
,
F. M.
, and
Wang
,
Y. Z.
,
2013
, “
Study on Vibration Characteristics in Periodic Plate Structures Using the Spectral Element Method
,”
Acta Mech.
,
224
(
5
), pp.
1089
1101
.
42.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamics
,
Wiley
,
New York
.
43.
Alford
,
R. M.
,
Kelly
,
K. R.
, and
Boore
,
D. M.
,
1974
, “
Accuracy of Finite‐Difference Modeling of the Acoustic Wave Equation
,”
Geophysics
,
39
(
6
), pp.
834
842
.
44.
Wittrick
,
W. H.
, and
Williams
,
F. W.
,
1971
, “
A General Algorithm for Computing Natural Frequencies of Elastic Structures
,”
Q. J. Mech. Appl. Math.
,
24
(
3
), pp.
263
284
.
45.
Williams
,
F. W.
,
1986
, “
An Algorithm for Exact Eigenvalue Calculations for Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
23
(
4
), pp.
609
622
.
46.
Yuan
,
S.
,
Ye
,
K.
, and
Williams
,
F. W.
,
2004
, “
Second Order Mode-Finding Method in Dynamic Stiffness Matrix Methods
,”
J. Sound Vib.
,
269
(
3–5
), pp.
689
708
.
47.
Cheng
,
L.
,
Li
,
Y. Y.
, and
Gao
,
J. X.
,
2005
, “
Energy Transmission in a Mechanically-Linked Double-Wall Structure Coupled to an Acoustic Enclosure
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
2742
2751
.
48.
Panneton
,
R.
, and
Atalla
,
N.
,
1996
, “
Numerical Prediction of Sound Transmission Through Finite Multilayer Systems With Poroelastic Materials
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
346
354
.
49.
Williams
,
E. G.
,
1999
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
,
Academic Press
,
London
.
50.
Wang
,
T.
,
Li
,
S.
, and
Nutt
,
S. R.
,
2009
, “
Optimal Design of Acoustical Sandwich Panels With a Genetic Algorithm
,”
Appl. Acoust.
,
70
(
3
), pp.
416
425
.
You do not currently have access to this content.