It has been shown that exponentially tapering the width of a vibration-based piezoelectric energy harvester will result in increasing electric power per mass in a specified frequency. In this paper, a nonlinear solution of an exponentially decreasing width piezoelectric energy harvester is presented. Piezoelectric, inertial, and geometric nonlinearities are included in the presented model, while the exponentially tapered piezoelectric beam's mass normalized mode shapes are utilized in Galerkin discretization. The developed nonlinear coupled equations of motion are solved using method of multiple scales (MMS), and the steady states results are verified by experiment in high amplitude excitation. Finally, the exponentially tapering parameter effect is studied, and it is concluded that the voltage per mass of the energy harvester is improved by tapering at high exciting acceleration amplitudes.

References

References
1.
Baker
,
J.
,
Roundy
,
S.
, and
Wright
,
P.
,
2005
, “
Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks
,”
AIAA
Paper No. 2005-5617.
2.
Mateu
,
L.
, and
Moll
,
F.
,
2005
, “
Optimum Piezoelectric Bending Beam Structures for Energy Harvesting Using Shoe Inserts
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
835
845
.
3.
Benasciutti
,
D.
,
Moro
,
L.
,
Zelenika
,
S.
, and
Brusa
,
E.
,
2010
, “
Vibration Energy Scavenging Via Piezoelectric Bimorphs of Optimized Shapes
,”
Microsyst. Technol.
,
16
(
5
), pp.
657
668
.
4.
Matova
,
S. P.
,
Renaud
,
M.
,
Jambunathan
,
M.
,
Goedbloed
,
M.
, and
Van Schaijk
,
R.
,
2013
, “
Effect of Length/Width Ratio of Tapered Beams on the Performance of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
22
(
7
), p.
75015
.
5.
Salmani
,
H.
,
Rahimi
,
G. H.
, and
Hosseini Kordkheili
,
S. A.
,
2015
, “
An Exact Analytical Solution to Exponentially Tapered Piezoelectric Energy Harvester
,”
Shock Vib.
,
2015
, pp.
1
13
.
6.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
7.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
19
(
11
), pp.
1311
1325
.
8.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
25009
.
9.
Rosa
,
M.
, and
De Marqui Junior
,
C.
,
2014
, “
Modeling and Analysis of a Piezoelectric Energy Harvester With Varying Cross-Sectional Area
,”
Shock Vib.
,
2014
, p. 930503.
10.
Daqaq
,
M. F.
,
Stabler
,
C.
,
Qaroush
,
Y.
, and
Seuaciuc-Osorio
,
T.
,
2008
, “
Investigation of Power Harvesting Via Parametric Excitations
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
545
557
.
11.
Stanton
,
S. C.
,
Erturk
,
A.
,
Mann
,
B. P.
, and
Inman
,
D. J.
,
2010
, “
Resonant Manifestation of Intrinsic Nonlinearity Within Electroelastic Micropower Generators
,”
Appl. Phys. Lett.
,
97
(
25
), p.
254101
.
12.
Stanton
,
S. C.
,
Erturk
,
A.
,
Mann
,
B. P.
, and
Inman
,
D. J.
,
2010
, “
Nonlinear Piezoelectricity in Electroelastic Energy Harvesters: Modeling and Experimental Identification
,”
J. Appl. Phys.
,
108
(
7
), pp.
1
9
.
13.
Stanton
,
S. C.
,
Erturk
,
A.
,
Mann
,
B. P.
,
Dowell
,
E. H.
, and
Inman
,
D. J.
,
2012
, “
Nonlinear Nonconservative Behavior and Modeling of Piezoelectric Energy Harvesters Including Proof Mass Effects
,”
J. Intell. Mater. Syst. Struct.
,
23
(
2
), pp.
183
199
.
14.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.
15.
Goldschmidtboeing
,
F.
,
Eichhorn
,
C.
,
Wischke
,
M.
,
Kroener
,
M.
, and
Woias
,
P.
,
2011
, “
The Influence of Ferroelastic Hysteresis on Mechanically Excited PZT Cantilever Beams
,”
11th International Workshop Micro Nanotechnology Power Generation Energy Conversion Application
(PowerMEMS), Seoul, Korea, Nov. 15–18, pp.
114
117
.
16.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
, and
Hajj
,
M. R.
,
2012
, “
Global Nonlinear Distributed-Parameter Model of Parametrically Excited Piezoelectric Energy Harvesters
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1147
1160
.
17.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
, and
Hajj
,
M. R.
,
2012
, “
Effects of Nonlinear Piezoelectric Coupling on Energy Harvesters Under Direct Excitation
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1221
1232
.
18.
Leadenham
,
S.
, and
Erturk
,
A.
,
2014
, “
Unified Nonlinear Electroelastic Dynamics of a Bimorph Piezoelectric Cantilever for Energy Harvesting, Sensing, and Actuation
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1727
1743
.
19.
Garg
,
A.
, and
Dwivedy
,
S. K.
,
2016
, “
Nonlinear Dynamics of Axially Loaded Piezoelectric Energy Harvester
,”
Procedia Eng.
,
144
, pp.
592
599
.
20.
Silva
,
C. J.
, and
Daqaq
,
M. F.
,
2016
, “
Nonlinear Flexural Response of a Slender Cantilever Beam of Constant Thickness and Linearly-Varying Width to a Primary Resonance Excitation
,”
J. Sound Vib.
,
389
, pp. 438–453.
21.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
Mc Graw-Hill
, New York, Chap. 6.
22.
Meitzler
,
D. B. A. H.
,
Tiersten
,
H. F.
, and
Warner
,
A. W.
,
1988
, “
IEEE Standard on Piezoelectricity
,” Institute of Electrical and Electronics Engineers, Piscataway, NJ, Standard No. ANSI/IEEE Std 176-1987.
23.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2004
,
Linear and Nonlinear Structural Mechanics
,
Wiley
, Hoboken, NJ, Chap. 4.
24.
Arafa
,
M.
, and
Baz
,
A.
,
2004
, “
On the Nonlinear Behavior of Piezoelectric Actuators
,”
J. Vib. Control
,
10
(
3
), pp.
387
398
.
You do not currently have access to this content.