This paper presents an experimental and theoretical study of vibration of a four-span continuous plate with two rails on top and four extra supports excited by one or two moving model cars, which is meant to represent vehicle–track–bridge dynamic interaction. Measured natural frequencies of the plate structure are used to update the finite element (FE) model of the structure. Four laser displacement transducers are placed on the ground to measure the displacements of the plate. A laser-Doppler vibrometer is used to measure the real-time speed of the moving cars, which reveals that the speeds decrease with time at a small and almost constant deceleration which can affect the structural dynamic response. A fascinating experiment is the use of two cars connected in series, which is very rare and has never been done on a multispan structure. Vibration of the plate structure excited by two moving cars separated at a distance is also measured and exhibits interesting dynamic behavior too. A theoretical model of the whole structure is constructed and an iterative method is developed to determine the dynamic response. The numerical and the experimental results are found to agree very well, in particular when deceleration is considered in the theoretical model.

References

References
1.
Frýba
,
L.
,
1999
,
Vibration of Solids and Structures Under Moving Loads
,
Thomas Telford
,
Prague, Czech Republic
.
2.
Ouyang
,
H.
,
2011
, “
Moving-Load Dynamic Problems: A Tutorial (With a Brief Overview)
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2039
2060
.
3.
Au
,
F. T. K.
,
Cheng
,
Y. S.
, and
Cheung
,
Y. K.
,
2001
, “
Vibration Analysis of Bridges Under Moving Vehicles and Trains: An Overview
,”
Prog. Struct. Eng. Mater.
,
3
(
3
), pp.
299
304
.
4.
Nguyen
,
D. V.
,
Kim
,
K. D.
, and
Warnitchai
,
P.
,
2009
, “
Simulation Procedure for Vehicle-Substructure Dynamic Interactions and Wheel Movements Using Linearized Wheel-Rail Interfaces
,”
Finite Elem. Anal. Des.
,
45
(
5
), pp.
341
356
.
5.
Zhai
,
W.
,
Xia
,
H.
,
Cai
,
C.
,
Gao
,
M.
,
Li
,
X.
,
Guo
,
X.
,
Zhang
,
N.
, and
Wang
,
K.
,
2013
, “
High-Speed Train–Track–Bridge Dynamic Interactions—Part I: Theoretical Model and Numerical Simulation
,”
Int. J. Rail Transp.
,
1
(
1–2
), pp.
3
24
.
6.
Chen
,
Y.
,
Zhang
,
B.
,
Zhang
,
N.
, and
Zheng
,
M.
,
2015
, “
A Condensation Method for the Dynamic Analysis of Vertical Vehicle-Track Interaction Considering Vehicle Flexibility
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041010
.
7.
Song
,
M. K.
,
Noh
,
H. C.
, and
Choi
,
C. K.
,
2003
, “
A New Three-Dimensional Finite Element Analysis Model of High-Speed Train–Bridge Interactions
,”
Eng. Struct.
,
25
(
13
), pp.
1611
1626
.
8.
Ju
,
S. H.
,
2013
, “
3D Analysis of High-Speed Trains Moving on Bridges With Foundation Settlements
,”
Arch. Appl. Mech.
,
83
(
2
), pp.
281
291
.
9.
Lou
,
P.
, and
Zeng
,
Q. Y.
,
2005
, “
Formulation of Equations of Motion of Finite Element Form for Vehicle-Track-Bridge Interaction System With Two Types of Vehicle Model
,”
Int. J. Numer. Methods Eng.
,
62
(
3
), pp.
435
474
.
10.
Yang
,
F.
, and
Fonder
,
G. A.
,
1996
, “
An Iterative Solution Method for Dynamic Response of Bridge–Vehicles Systems
,”
Earthquake Eng. Struct. Dyn.
,
25
(
2
), pp.
195
215
.
11.
Hussein
,
M. F. M.
, and
Hunt
,
H. E. M.
,
2007
, “
A Numerical Model for Calculating Vibration From a Railway Tunnel Embedded in a Full-Space
,”
J. Sound Vib.
,
305
(
3
), pp.
401
431
.
12.
Marchesiello
,
S.
,
Fasana
,
A.
,
Garibaldi
,
L.
, and
Piombo
,
B. A. D.
,
1999
, “
Dynamics of Multi-Span Continuous Straight Bridges Subject to Multi-Degrees of Freedom Moving Vehicle Excitation
,”
J. Sound Vib.
,
224
(
3
), pp.
541
561
.
13.
Pesterev
,
A. V.
, and
Bergman
,
L. A.
,
2000
, “
An Improved Series Expansion of the Solution to the Moving Oscillator Problem
,”
ASME J. Vib. Acoust.
,
122
(
1
), pp.
54
61
.
14.
Yau
,
J. D.
, and
Yang
,
Y. B.
,
2006
, “
Vertical Accelerations of Simple Beams Due to Successive Loads Traveling at Resonant Speeds
,”
J. Sound Vib.
,
289
(
1–2
), pp.
210
228
.
15.
Muscolino
,
G.
,
Palmeri
,
A.
, and
Sofi
,
A.
,
2009
, “
Absolute Versus Relative Formulations of the Moving Oscillator Problem
,”
Int. J. Solids Struct.
,
46
(
5
), pp.
1085
1094
.
16.
Wu
,
J. S.
,
Lee
,
M. L.
, and
Lai
,
T. S.
,
1987
, “
The Dynamic Analysis of a Flat Plate Under a Moving Load by the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
24
(
4
), pp.
743
762
.
17.
Cheng
,
Y. S.
,
Au
,
F. T. K.
,
Cheung
,
Y. K.
, and
Zheng
,
D. Y.
,
1999
, “
On the Separation Between Moving Vehicles and Bridge
,”
J. Sound Vib.
,
222
(
5
), pp.
781
801
.
18.
Baeza
,
L.
, and
Ouyang
,
H.
,
2008
, “
Dynamics of a Truss Structure and Its Moving-Oscillator Exciter With Separation and Impact-Reattachment
,”
Proc. R. Soc. A
,
464
(
2098
), pp.
2517
2533
.
19.
Dimitrovová
,
Z.
, and
Varandas
,
J. N.
,
2009
, “
Critical Velocity of a Load Moving on a Beam With a Sudden Change of Foundation Stiffness: Applications to High-Speed Trains
,”
Comput. Struct.
,
87
(
19–20
), pp.
1224
1232
.
20.
Bajer
,
C. I.
, and
Dyniewicz
,
B.
,
2009
, “
Numerical Modelling of Structure Vibrations Under Inertial Moving Load
,”
Arch. Appl. Mech.
,
79
(
6–7
), pp.
499
508
.
21.
Rao
,
G. V.
,
2000
, “
Linear Dynamics of an Elastic Beam Under Moving Loads
,”
ASME J. Vib. Acoust.
,
122
(3), pp.
281
289
.
22.
Green
,
M. F.
, and
Cebon
,
D.
,
1994
, “
Dynamic Response of Highway Bridges to Heavy Vehicle Loads: Theory and Experimental Validation
,”
J. Sound Vib.
,
170
(
1
), pp.
51
78
.
23.
Green
,
M. F.
,
1990
, “Dynamic Response of Short-Span Highway Bridges to Heavy Vehicle Loads,”
Ph.D. thesis
, University of Cambridge, Cambridge, UK.https://www.repository.cam.ac.uk/handle/1810/251494
24.
Brownjohn
,
J. M. W.
,
Moyo
,
P.
,
Omenzetter
,
P.
, and
Lu
,
Y.
,
2003
, “
Assessment of Highway Bridge Upgrading by Dynamic Testing and Finite-Element Model Updating
,”
J. Bridge Eng.
,
8
(
3
), pp.
162
172
.
25.
Kwark
,
J. W.
,
Choi
,
E. S.
,
Kim
,
Y. J.
,
Kim
,
B. S.
, and
Kim
,
S. I.
,
2004
, “
Dynamic Behavior of Two-Span Continuous Concrete Bridges Under Moving High-Speed Train
,”
Comput. Struct.
,
82
(
4–5
), pp.
463
474
.
26.
Xia
,
H.
,
De Roeck
,
G.
,
Zhang
,
N.
, and
Maeck
,
J.
,
2003
, “
Experimental Analysis of a High-Speed Railway Bridge Under Thalys Trains
,”
J. Sound Vib.
,
268
(
1
), pp.
103
113
.
27.
Cai
,
C. S.
,
Shi
,
X. M.
,
Araujo
,
M.
, and
Chen
,
S. R.
,
2007
, “
Effect of Approach Span Condition on Vehicle-Induced Dynamic Response of Slab-on-Girder Road Bridges
,”
Eng. Struct.
,
29
(
12
), pp.
3210
3226
.
28.
Liu
,
K.
,
Reynders
,
E.
,
De Roeck
,
G.
, and
Lombaert
,
G.
,
2009
, “
Experimental and Numerical Analysis of a Composite Bridge for High-Speed Trains
,”
J. Sound Vib.
,
320
(
1–2
), pp.
201
220
.
29.
Deng
,
L.
, and
Cai
,
C. S.
,
2010
, “
Identification of Dynamic Vehicular Axle Loads: Demonstration by a Field Study
,”
J. Vib. Control
,
17
(
2
), pp.
183
195
.
30.
Zhai
,
W.
,
Wang
,
S.
,
Zhang
,
N.
,
Gao
,
M.
,
Xia
,
H.
,
Cai
,
C.
, and
Zhao
,
C.
,
2013
, “
High-Speed Train–Track–Bridge Dynamic Interactions—Part II: Experimental Validation and Engineering Application
,”
Int. J. Rail Transp.
,
1
(
1–2
), pp.
25
41
.
31.
Sheng
,
X.
,
Jones
,
C. J. C.
, and
Thompson
,
D. J.
,
2003
, “
A Comparison of a Theoretical Model for Quasi-Statically and Dynamically Induced Environmental Vibration From Trains With Measurements
,”
J. Sound Vib.
,
267
(
3
), pp.
621
635
.
32.
Lombaert
,
G.
,
Degrande
,
G.
,
Kogut
,
J.
, and
François
,
S.
,
2006
, “
The Experimental Validation of a Numerical Model for the Prediction of Railway Induced Vibrations
,”
J. Sound Vib.
,
297
(
3–5
), pp.
512
535
.
33.
Zhu
,
X. Q.
, and
Law
,
S. S.
,
1999
, “
Moving Forces Identification on a Multi-Span Continuous Bridge
,”
J. Sound Vib.
,
228
(
2
), pp.
377
396
.
34.
Bilello
,
C.
,
Bergman
,
L. A.
, and
Kuchma
,
D.
,
2004
, “
Experimental Investigation of a Small-Scale Bridge Model Under a Moving Mass
,”
J. Struct. Eng.
,
130
(
5
), pp.
799
804
.
35.
Chan
,
T. H. T.
, and
Ashebo
,
D. B.
,
2006
, “
Moving Axle Load From Multi-Span Continuous Bridge: Laboratory Study
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
521
526
.
36.
Stăncioiu
,
D.
,
Ouyang
,
H.
,
Mottershead
,
J. E.
, and
James
,
S.
,
2011
, “
Experimental Investigations of a Multi-Span Flexible Structure Subjected to Moving Masses
,”
J. Sound Vib.
,
330
(
9
), pp.
2004
2016
.
37.
Yang
,
J.
,
Ouyang
,
H.
, and
Stăncioiu
,
D.
,
2017
, “
Numerical Studies of Vibration of Four-Span Continuous Plate With Rails Excited by Moving Car With Experimental Validation
,”
Int. J. Struct. Stab. Dyn.
,
17
(
10
), p.
1750119
.
38.
Cerda
,
F.
,
Garrett
,
J. H.
,
Bielak
,
J.
,
Rizzo
,
P.
, and
Barrera
,
J.
, 2012, “
Indirect Structural Health Monitoring in Bridges: Scale Experiments
,” 6th International Conference on Bridge Maintenance, Safety and Management (
IABAMAS
), Villa Erba, Italy, July 8–12, pp.
346
353
.http://repository.cmu.edu/cgi/viewcontent.cgi?article=1320&context=ece
39.
Kim
,
C. W.
,
Inoue
,
S.
,
Sugiura
,
K.
,
McGetrick
,
P.
, and
Kawatani
,
M.
, 2016, “
Extracting Bridge Frequencies From Dynamic Responses of Two Passing Vehicles
,”
Sixth International Conference on Structural Engineering, Mechanics and Computation
, Cape Town, South Africa, Sept. 5–7, pp.
1858
1864
.https://pure.qub.ac.uk/portal/files/104659965/Extracting_bridge_frequencies_from_dynamic_responses_of_two_passing_vehicles.pdf
40.
Mottershead
,
J. E.
,
Link
,
M.
, and
Friswell
,
M. I.
,
2011
, “
The Sensitivity Method in Finite Element Model Updating: A Tutorial
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2275
2296
.
41.
Guo
,
W. W.
,
Xia
,
H.
,
De Roeck
,
G.
, and
Liu
,
K.
,
2012
, “
Integral Model for Train-Track-Bridge Interaction on the Sesia Viaduct: Dynamic Simulation and Critical Assessment
,”
Comput. Struct.
,
112–113
, pp.
205
216
.
You do not currently have access to this content.