Unbalance is one of the most common malfunctions found in rotating machines generating high vibration amplitudes that can lead to fatigue and wear of rotor elements. There are several well-known balancing techniques wherein one of the most widespread approaches is the so-called influence coefficients method (IC method). Aiming to increase the robustness of the standard IC method, in this paper, a revised IC balancing methodology for rotating machines is proposed. In this sense, a preprocessing stage is applied to access the uncertainties affecting the rotating machine. In this sense, measurement data sets evaluated under the fuzzy logic approach are used. Thus, the rotor vibration responses measured over a long period are considered by means of a fuzzy transformation (defining unbalance fuzzy sets). The unbalance condition of the rotating machine is determined through a defuzzification process. This unbalance condition is then introduced in the IC method algorithm aiming at obtaining correction weights and associated angular positions that increase the balancing robustness as compared with the classical approach. Numerical and experimental studies are used to evaluate the effectiveness of the proposed methodology. The obtained results illustrate the capacity to increase the balancing overall robustness.

References

References
1.
Eisenmann
,
R. C.
, and
Eisenmann
,
R. C.
, Jr.
,
1998
,
Machinery Malfunction, Diagnosis and Correction
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Zhang
,
X.
,
Liu
,
X.
, and
Zhao
,
H.
,
2017
, “
New Active Online Balancing Method for Grinding Wheel Using Liquid Injection and Free Dripping
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031001
.
3.
Steffen
,
V.
, Jr.
, and
Lacerda
,
H. B.
,
1996
, “
On the Balancing of Flexible Rotors
,”
Int. J. Anal. Exp. Modal Anal.
,
1
(
11
), pp.
96
105
.
4.
Wowk
,
V.
,
1998
,
Machinery Vibration: Balancing
,
1st ed.
,
McGraw-Hill
, New York.
5.
Ishida
,
Y.
, and
Yamamoto
,
T.
,
2012
,
Linear and Nonlinear Rotordynamics
,
Wiley-VCH
, Weinheim,
Germany
.
6.
Kang
,
Y.
,
Lin
,
T.-W.
,
Chang
,
Y.-J.
,
Chang
,
Y.-P.
, and
Wang
,
C.-C.
,
2008
, “
Optimal Balancing of Flexible Rotors by Minimizing the Condition Number of Influence Coefficients
,”
Mech. Mach. Theory
,
43
(
7
), pp.
891
908
.
7.
Chatterton
,
S.
,
Ricci
,
R.
, and
Pennacchi
,
P.
,
2010
, “
Application and Comparison of High Breakdown-Point and Bounded-Influence Estimators to Rotor Balancing
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
064502
.
8.
Untaroiu
,
C. D.
,
Allaire
,
P. E.
, and
Foiles
,
W. C.
,
2008
, “
Balancing of Flexible Rotors Using Convex Optimization Techniques: Optimum Min-Max LMI Influence Coefficient Balancing
,”
ASME J. Vib. Acoust.
,
132
(
2
), p. 021006.
9.
Saldarriaga
,
M. V.
,
Steffen
,
V.
, Jr.
,
Der Hagopian
,
J.
, and
Mahfoud
,
J.
,
2010
, “
On the Balancing of Flexible Rotating Machines by Using an Inverse Problem Approach
,”
J. Vib. Control
,
17
(
7
), pp.
1021
1033
.
10.
Li
,
G.
,
Lin
,
Z.
, and
Allaire
,
P. E.
,
2008
, “
Robust Optimal Balancing of High-Speed Machinery Using Convex Optimization
,”
ASME J. Vib. Acoust.
,
130
(
3
), p. 031008.
11.
Silva
,
A. D. G.
,
Cavalini
,
A. A.
, Jr.
, and
Steffen
,
V.
, Jr.
,
2016
, “
Model Based Robust Balancing Approach for Rotating Machines
,”
Conference and Exposition on Structural Dynamics
, Orlando, FL, Jan. 25–28, pp. 243–252.
12.
Pota
,
M.
,
Esposito
,
M.
, and
De Pietro
,
G.
,
2013
, “
Transforming Probability Distributions Into Membership Functions of Fuzzy Classes: A Hypothesis Test Approach
,”
Fuzzy Sets Syst.
,
1
(
233
), pp.
52
73
.
13.
Ehrich
,
F. F.
,
1992
,
Handbook of Rotordynamics
,
McGraw-Hill
, New York.
14.
Muszynska
,
A.
,
2005
,
Rotordynamics
,
CRC Press
, Boca Raton, FL.
15.
Bently
,
D. E.
, and
Hatch
,
C. T.
,
2002
,
Fundamentals of Rotating Machinery Diagnostics
,
Bently Pressurized Bearing Company
,
Minden, NV
.
16.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.
17.
Dubois
,
D.
, and
Prade
,
H.
,
1997
, “
The Three Semantics of Fuzzy Sets
,”
Fuzzy Sets Syst.
,
90
(
2
), pp.
141
150
.
18.
Zadeh
,
L. A.
,
1968
, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
100
(Suppl. 1), pp.
3
28
.
19.
Möller
,
B.
, and
Beer
,
M.
,
2004
,
Fuzzy Randomness, Uncertainty in Civil Engineering and Computational Mechanics
,
Spring-Verlag
,
Berlin
.
20.
Dourado
,
A. G. S.
,
Cavalini
,
A. A.
, Jr.
, and
Steffen
,
V.
, Jr.
,
2017
, “
Uncertainty Quantification Techniques Applied to Rotating Systems: A Comparative Study
,”
J. Vib. Control
, epub.
21.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst., Man, Cybern.
,
1
(
15
), pp.
116
132
.
22.
Cavalini
,
A. A.
, Jr
,
Sanches
,
L.
,
Bachschmid
,
N.
, and
Steffen
,
V.
, Jr
,
2016
, “
Crack Identification for Rotating Machines Based on a Nonlinear Approach
,”
Mech. Syst. Signal Process.
,
79
, pp.
72
85
.
23.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
2nd ed.
,
Marcel Dekker
, Boca Raton, FL.
24.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1998
,
Rotordynamics Prediction in Engineering
,
2nd ed.
,
Wiley
, Chichester, UK.
You do not currently have access to this content.