The vibration control of a sandwich beam with supported mass subjected to random support motion excitations can be performed using magnetorheological visco-elastomer core with adjustable dynamic properties. The periodic distributions of geometrical and physical parameters of the sandwich beam can improve its vibration response characteristics. To further improve characteristics or reduce responses, the quasi-periodic sandwich beam with supported mass under random excitations is studied. The facial layer thickness and core layer modulus of the sandwich beam are considered as quasi-periodic distributions. The partial differential equations for the horizontal and vertical coupling motions of the sandwich beam are derived and converted into ordinary differential equations for multi-degrees-of-freedom (DOFs) vibration. The expressions of frequency response and response spectral densities of the sandwich beam are obtained. Numerical results are given to illustrate the greatly improvable vibration response characteristics of the sandwich beam and the outstanding relative reduction localization of antiresonant responses. The proposed quasi-periodic distribution and analysis method can be used for the vibration control design of sandwich beams subjected to random excitations.

References

References
1.
Dyke
,
S. J.
,
Spencer
,
B. F.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
,
1996
, “
Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction
,”
Smart Mater. Struct.
,
5
(
5
), pp.
565
575
.
2.
Spencer
,
B. F.
, and
Nagarajaiah
,
S.
,
2003
, “
State of the Art of Structural Control
,”
ASCE J. Struct. Eng.
,
129
(
7
), pp.
845
856
.
3.
Wang
,
D. H.
, and
Liao
,
W. H.
,
2011
, “
Magnetorheological Fluid Dampers: A Review of Parametric Modeling
,”
Smart Mater. Struct.
,
20
(
2
), p.
023001
.
4.
Casciati
,
F.
,
Rodellar
,
J.
, and
Yildirim
,
U.
,
2012
, “
Active and Semi-Active Control of Structures–Theory and Application: A Review of Recent Advances
,”
J. Intell. Mater. Syst. Struct.
,
23
(
11
), pp.
1181
1195
.
5.
Zapateiro
,
M.
,
Karimi
,
H. R.
,
Luo
,
N.
, and
Spencer
,
B. F.
,
2010
, “
Real-Time Hybrid Testing of Semiactive Control Strategies for Vibration Reduction in a Structure With MR Damper
,”
Struct. Control Health Monit.
,
17
(4), pp.
427
451
.
6.
Cha
,
Y. J.
,
Zhang
,
J. Q.
,
Agrawal
,
A. K.
,
Dong
,
B. P.
,
Friedman
,
A.
,
Dyke
,
S. J.
, and
Ricles
,
J.
,
2013
, “
Comparative Studies of Semiactive Control Strategies for MR Dampers: Pure Simulation and Real-Time Hybrid Tests
,”
ASCE J. Struct. Eng.
,
139
(7), pp.
1237
1248
.
7.
Rajamohan
,
V.
,
Rakheja
,
S.
, and
Sedaghati
,
R.
,
2010
, “
Vibration Analysis of a Partially Treated Multi-Layer Beam With Magnetorheological Fluid
,”
J. Sound Vib.
,
329
(
17
), pp.
3451
3469
.
8.
Manoharan
,
R.
,
Vasudevan
,
R.
, and
Jeevanantham
,
A. K.
,
2014
, “
Dynamic Characteristics of a Laminated Composite Magnetorheological Fluid Sandwich Plate
,”
Smart Mater. Struct.
,
23
(
2
), p.
025022
.
9.
Kumar
,
R.
,
2012
, “
Active Vibration Control of Beams by Combining Precompressed Layer Damping and ACLD Treatment: Performance Comparison of Various Robust Control Techniques
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021015
.
10.
Li
,
Y. C.
,
Li
,
J. C.
,
Li
,
W. H.
, and
Du
,
H. P.
,
2014
, “
A State-of-the-Art Review on Magnetorheological Elastomer Devices
,”
Smart Mater. Struct.
,
23
(
12
), p.
123001
.
11.
York
,
D.
,
Wang
,
X.
, and
Gordaninejad
,
F.
,
2007
, “
A New MR Fluid-Elastomer Vibration Isolator
,”
J. Intell. Mater. Syst. Struct.
,
18
(
12
), pp.
1221
1225
.
12.
Hu
,
W.
, and
Wereley
,
N. M.
,
2008
, “
Hybrid Magnetorheological Fluid-Elastomeric Lag Dampers for Helicopter Stability Augmentation
,”
Smart Mater. Struct.
,
17
(
4
), p.
045021
.
13.
Hoang
,
N.
,
Zhang
,
N.
, and
Du
,
H.
,
2011
, “
An Adaptive Tunable Vibration Absorber Using a New Magnetorheological Elastomer for Vehicular Powertrain Transient Vibration Reduction
,”
Smart Mater. Struct.
,
20
(
1
), p.
015019
.
14.
Jung
,
H. J.
,
Eem
,
S. H.
,
Jang
,
D. D.
, and
Koo
,
J. H.
,
2011
, “
Seismic Performance Analysis of a Smart Base-Isolation System Considering Dynamics of MR Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1439
1450
.
15.
Ginder
,
J. M.
,
Clark
,
S. M.
,
Schlotter
,
W. F.
, and
Nichols
,
M. E.
,
2002
, “
Magnetostrictive Phenomena in Magneto-Rheological Elastomers
,”
Int. J. Mod. Phys. B
,
16
(
17–18
), pp.
2412
2418
.
16.
Bellan
,
C.
, and
Bossis
,
G.
,
2002
, “
Field Dependence of Viscoelastic Properties of MR Elastomers
,”
Int. J. Mod. Phys. B
,
16
(
17–18
), pp.
2447
2453
.
17.
Demchuk
,
S. A.
, and
Kuzmin
,
V. A.
,
2002
, “
Viscoelastic Properties of Magnetorheological Elastomers in the Regime of Dynamic Deformation
,”
J. Eng. Phys. Thermophys.
,
75
(2), pp.
396
400
.
18.
Shen
,
Y.
,
Golnaraghi
,
M. F.
, and
Heppler
,
G. R.
,
2004
, “
Experimental Research and Modeling of Magnetorheological Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
15
(
1
), pp.
27
35
.
19.
Nikitin
,
L. V.
, and
Samus
,
A. N.
,
2005
, “
Magnetoelastics and Their Properties
,”
Int. J. Mod. Phys. B
,
19
(
7–9
), pp.
1360
1366
.
20.
Gong
,
X. L.
,
Zhang
,
X. Z.
, and
Zhang
,
P. Q.
,
2005
, “
Fabrication and Characterization of Isotropic Magnetorheological Elastomers
,”
Polym. Test.
,
24
(
5
), pp.
669
676
.
21.
Bose
,
H.
,
2007
, “
Viscoelastic Properties of Silicone-Based Magnetorheological Elastomers
,”
Int. J. Mod. Phys. B
,
21
(28–29), pp.
4790
4797
.
22.
Kallio
,
M.
,
Lindroos
,
T.
,
Aalto
,
S.
,
Jarvinen
,
E.
,
Karna
,
T.
, and
Meinander
,
T.
,
2007
, “
Dynamic Compression Testing of a Tunable Spring Element Consisting of a Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
16
(
2
), pp.
506
514
.
23.
Kaleta
,
J.
,
Krolewicz
,
M.
, and
Lewandowski
,
D.
,
2011
, “
Magnetomechanical Properties of Anisotropic and Isotropic Magnetorheological Composites With Thermoplastic Elastomer Matrices
,”
Smart Mater. Struct.
,
20
(
8
), p.
085006
.
24.
Ying
,
Z. G.
,
Ni
,
Y. Q.
, and
Sajjadi
,
M.
,
2013
, “
Nonlinear Dynamic Characteristics of Magneto-Rheological Visco-Elastomers
,”
Sci. China Technol. Sci.
,
56
(
4
), pp.
878
883
.
25.
Zhou
,
G. Y.
, and
Wang
,
Q.
,
2005
, “
Magnetorheological Elastomer-Based Smart Sandwich Beams With Nonconduction Skins
,”
Smart Mater. Struct.
,
14
(
5
), pp.
1001
1009
.
26.
Zhou
,
G. Y.
, and
Wang
,
Q.
,
2006
, “
Study on the Adjustable Rigidity of Magnetorheological-Elastomer-Based Sandwich Beams
,”
Smart Mater. Struct.
,
15
(
1
), pp.
59
74
.
27.
Aguib
,
S.
,
Nour
,
A.
,
Zahloul
,
H.
,
Bossis
,
G.
,
Chevalier
,
Y.
, and
Lancon
,
P.
,
2014
, “
Dynamic Behavior Analysis of a Magnetorheological Elastomer Sandwich Plate
,”
Int. J. Mech. Sci.
,
87
, pp.
118
136
.
28.
Choi
,
W. J.
,
Xiong
,
Y. P.
, and
Shenoi
,
R. A.
,
2010
, “
Vibration Characteristics of Sandwich Beam With Steel Skins and Magnetorheological Elastomer Cores
,”
Adv. Struct. Eng.
,
13
(
5
), pp.
837
847
.
29.
Yeh
,
J. Y.
,
2013
, “
Vibration Analysis of Sandwich Rectangular Plates With Magnetorheological Elastomer Damping Treatment
,”
Smart Mater. Struct.
,
22
(
3
), p.
035010
.
30.
Nayak
,
B.
,
Dwivedy
,
S. K.
, and
Murthy
,
K. S. R. K.
,
2013
, “
Dynamic Stability of Magnetorheological Elastomer Based Adaptive Sandwich Beam With Conductive Skins Using FEM and the Harmonic Balance Method
,”
Int. J. Mech. Sci.
,
77
, pp.
205
216
.
31.
Dwivedy
,
S. K.
,
Mahendra
,
N.
, and
Sahu
,
K. C.
,
2009
, “
Parametric Instability Regions of a Soft and Magnetorheological Elastomer Cored Sandwich Beam
,”
J. Sound Vib.
,
325
(
4–5
), pp.
686
704
.
32.
Nayak
,
B.
,
Dwivedy
,
S. K.
, and
Murthy
,
K. S. R. K.
,
2011
, “
Dynamic Analysis of Magnetorheological Elastomer-Based Sandwich Beam With Conductive Skins Under Various Boundary Conditions
,”
J. Sound Vib.
,
330
(
9
), pp.
1837
1859
.
33.
Hasheminejad
,
S. M.
, and
Shabanimotlagh
,
M.
,
2010
, “
Magnetic-Field-Dependent Sound Transmission Properties of Magnetorheological Elastomer-Based Adaptive Panels
,”
Smart Mater. Struct.
,
19
(
3
), p.
035006
.
34.
Ni
,
Y. Q.
,
Ying
,
Z. G.
, and
Chen
,
Z. H.
,
2011
, “
Micro-Vibration Suppression of Equipment Supported on a Floor Incorporating Magneto-Rheological Elastomer Core
,”
J. Sound Vib.
,
330
(
18–19
), pp.
4369
4383
.
35.
Ying
,
Z. G.
,
Ni
,
Y. Q.
, and
Huan
,
R. H.
,
2015
, “
Stochastic Microvibration Response Analysis of a Magnetorheological Viscoelastomer Based Sandwich Beam Under Localized Magnetic Fields
,”
Appl. Math. Modell.
,
39
(
18
), pp.
5559
5566
.
36.
Ying
,
Z. G.
,
Ni
,
Y. Q.
, and
Duan
,
Y. F.
,
2015
, “
Parametric Optimal Bounded Feedback Control for Smart Parameter-Controllable Composite Structures
,”
J. Sound Vib.
,
339
, pp.
38
55
.
37.
Mead
,
D. J.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
38.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
39.
Nayfeh
,
A. H.
, and
Hawwa
,
M. A.
,
1994
, “
Use of Mode Localization in Passive Control of Structural Buckling
,”
AIAA J.
,
32
(10), pp.
2131
2133
.
40.
Wei
,
J.
, and
Petyt
,
M.
,
1997
, “
A Method of Analyzing Finite Periodic Structures—Part 2: Comparison With Infinite Periodic Structure Theory
,”
J. Sound Vib.
,
202
(
4
), pp.
571
583
.
41.
Hunt
,
G. W.
, and
Wadee
,
M. A.
,
1998
, “
Localization and Mode Interaction in Sandwich Structures
,”
Proc. R. Soc. London A
,
454
(
1972
), pp.
1197
1216
.
42.
Bendisen
,
O. O.
,
2000
, “
Localization Phenomena in Structural Dynamics
,”
Chaos Solitons Fractals
,
11
(10), pp.
1621
1660
.
43.
Ruzzene
,
M.
, and
Baz
,
A.
,
2000
, “
Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts
,”
ASME J. Vib. Acoust.
,
122
(
2
), pp.
151
159
.
44.
Shelley
,
F. J.
, and
Clark
,
W. M.
,
2000
, “
Active Mode Localization in Distributed Parameter Systems With Consideration of Limited Actuator Placement—Part 1: Theory
,”
ASME J. Vib. Acoust.
,
122
(
2
), pp.
160
164
.
45.
Wierzbicki
,
E.
, and
Wozniak
,
C.
,
2000
, “
On the Dynamics of Combined Plane Periodic Structures
,”
Arch. Appl. Mech.
,
70
(
6
), pp.
387
398
.
46.
Michalak
,
B.
,
2000
, “
Vibrations of Plates With Initial Geometrical Periodical Imperfections Interacting With a Periodic Elastic Foundation
,”
Arch. Appl. Mech.
,
70
(
7
), pp.
508
518
.
47.
Romeo
,
F.
, and
Luongo
,
A.
,
2003
, “
Vibration Reduction in Piecewise Bi-Coupled Periodic Structures
,”
J. Sound Vib.
,
268
(
3
), pp.
601
615
.
48.
Yeh
,
J. Y.
, and
Chen
,
L. W.
,
2006
, “
Wave Propagation of a Periodic Sandwich Beam by FEM and the Transfer Matrix Method
,”
Comput. Struct.
,
73
(
1
), pp.
53
60
.
49.
Wu
,
T. Y.
, and
Wang
,
K. W.
,
2007
, “
Periodic Isolator Design Enhancement Via Vibration Confinement Through Eigenvector Assignment and Piezoelectric Circuitry
,”
J. Vib. Control
,
13
(
7
), pp.
989
1006
.
50.
Hull
,
A. J.
,
2008
, “
Dynamic Response of an Elastic Plate Containing Periodic Masses
,”
J. Sound Vib.
,
310
(
1–2
), pp.
1
20
.
51.
Mead
,
D. J.
,
2009
, “
The Forced Vibration of One-Dimensional Multi-Coupled Periodic Structures: An Application to Finite Element Analysis
,”
J. Sound Vib.
,
319
(
1–2
), pp.
282
304
.
52.
Jedrysiak
,
J.
,
2009
, “
Higher Order Vibrations of Thin Periodic Plates
,”
Thin-Walled Struct.
,
47
, pp.
890
901
.
53.
Sun
,
H.
,
Du
,
X.
, and
Pai
,
P. F.
,
2010
, “
Theory of Metamaterial Beams for Broadband Vibration Absorption
,”
J. Intell. Mater. Syst. Struct.
,
21
(
11
), pp.
1085
1101
.
54.
Casadei
,
F.
,
Ruzzene
,
M.
,
Dozio
,
L.
, and
Cunefare
,
K. A.
,
2010
, “
Broadband Vibration Control Through Periodic Arrays of Resonant Shunts: Experimental Investigation on Plates
,”
Smart Mater. Struct.
,
19
(
1
), p.
015002
.
55.
Claeys
,
C. C.
,
Vergote
,
K.
,
Sas
,
P.
, and
Desmet
,
W.
,
2013
, “
On the Potential of Tuned Resonators to Obtain Low-Frequency Vibrational Stop Bands in Periodic Panels
,”
J. Sound Vib.
,
332
(
6
), pp.
1418
1436
.
56.
Song
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2015
, “
Suppression of Vibration and Noise Radiation in a Flexible Floating Raft System Using Periodic Structures
,”
J. Vib. Control
,
21
(
2
), pp.
217
228
.
57.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Analysis and Experimental Estimation of Nonlinear Dispersion in a Periodic String
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031016
.
58.
Hvatov
,
A.
, and
Sorokin
,
S.
,
2015
, “
Free Vibration of Finite Periodic Structures in Pass- and Stop-Bands of the Counterpart Infinite Waveguides
,”
J. Sound Vib.
,
347
, pp.
200
217
.
59.
Junyi
,
L.
, and
Balint
,
D. S.
,
2015
, “
An Inverse Method to Determine the Dispersion Curves of Periodic Structures Based on Wave Superposition
,”
J. Sound Vib.
,
350
, pp.
41
72
.
60.
Wu
,
Z. J.
, and
Li
,
F. M.
,
2016
, “
Spectral Element Method and Its Application in Analysing the Vibration Band Gap Properties of Two-Dimensional Square Lattices
,”
J. Vib. Control
,
22
(
3
), pp.
710
721
.
61.
Domadiya
,
P. G.
,
Manconi
,
E.
,
Vanali
,
M.
,
Andersen
,
L. V.
, and
Ricci
,
A.
,
2016
, “
Numerical and Experimental Investigation of Stop-Bands in Finite and Infinite Periodic One-Dimensional Structures
,”
J. Vib. Control
,
22
(
4
), pp.
920
931
.
62.
Chen
,
J. S.
, and
Tsai
,
S. M.
,
2016
, “
Sandwich Structures With Periodic Assemblies on Elastic Foundation Under Moving Loads
,”
J. Vib. Control
,
22
(
10
), pp.
2519
2529
.
63.
Lallart
,
M.
,
Yan
,
L. J.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2016
, “
Damping of Periodic Bending Structures Featuring Nonlinear Interfaced Piezoelectric Elements
,”
J. Vib. Control
,
22
(
18
), pp.
3930
3941
.
64.
Wang
,
Y. Z.
,
Li
,
F. M.
, and
Wang
,
Y. S.
,
2016
, “
Influences of Active Control on Elastic Wave Propagation in a Weakly Nonlinear Phononic Crystal With a Monoatomic Lattice Chain
,”
Int. J. Mech. Sci.
,
106
, pp.
357
362
.
65.
Wang
,
Y. Z.
,
Li
,
F. M.
, and
Wang
,
Y. S.
,
2017
, “
Active Control of Elastic Wave Metamaterials
,”
J. Intell. Mater. Syst. Struct.
,
28
(
15
), pp.
2110
2116
.
66.
Harne
,
R. L.
, and
Urbanek
,
D. C.
,
2017
, “
Enhancing Broadband Vibration Energy Suppression Using Local Buckling Modes in Constrained Metamaterials
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061004
.
67.
Ying
,
Z. G.
, and
Ni
,
Y. Q.
,
2017
, “
A Double Expansion Method for the Frequency Response of Finite-Length Beams With Periodic Parameters
,”
J. Sound Vib.
,
391
, pp.
180
193
.
68.
Druesne
,
F.
,
Hamdaoui
,
M.
,
Yin
,
Q.
, and
Daya
,
E. M.
,
2017
, “
Variability Analysis of Modal Characteristics of Frequency-Dependent Visco-Elastic Three-Layered Sandwich Beams With Spatial Random Geometrical and Material Properties
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061007
.
69.
Ying
,
Z. G.
, and
Ni
,
Y. Q.
,
2017
, “
Dynamic Characteristics of Infinite-Length and Finite-Length Rods With High-Wave-Number Periodic Parameters
,”
J. Vib. Control
, epub.
70.
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1992
, “
Statistics Distribution of Frequency Response in Disordered Periodic Structures
,”
AIAA J.
,
30
(
5
), pp.
1400
1407
.
71.
Bouzit
,
D.
, and
Pierre
,
C.
,
1992
, “
Vibration Confinement Phenomena in Disordered, Mono-Coupled, Multi-Span Beams
,”
ASME J. Vib. Acoust.
,
114
(
4
), pp.
521
530
.
72.
Cai
,
C. W.
,
Cheung
,
Y. K.
, and
Chan
,
H. C.
,
1995
, “
Mode Localization Phenomena in Nearly Periodic Systems
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
141
149
.
73.
Elishakoff
,
I.
, and
Li
,
Y. W.
,
1995
, “
Buckling Mode Localization in Elastic Plates Due to Misplacement in the Stiffener Location
,”
Chaos Solitons Fractals
,
5
(
8
), pp.
1517
1531
.
74.
Bardell
,
N. S.
,
Langley
,
R. S.
,
Dunsdon
,
J. M.
, and
Klein
,
T.
,
1996
, “
The Effect of Period Asymmetry on Wave Propagation in Periodic Beams
,”
J. Sound Vib.
,
197
(
4
), pp.
427
445
.
75.
Xie
,
W. C.
,
1998
, “
Buckling Mode Localization in Rib-Stiffened Plates With Randomly Misplaced Stiffeners
,”
Comput. Struct.
,
67
(
1–3
), pp.
175
189
.
76.
Yan
,
Z. Z.
,
Zhang
,
C.
, and
Wang
,
Y. S.
,
2009
, “
Attenuation and Localization of Bending Waves in a Periodic/Disordered Fourfold Composite Beam
,”
J. Sound Vib.
,
327
(
1–2
), pp.
109
120
.
77.
Bisegna
,
P.
, and
Caruso
,
G.
,
2011
, “
Dynamical Behavior of Disordered Rotationally Periodic Structures: A Homogenization Approach
,”
J. Sound Vib.
,
330
(
11
), pp.
2608
2627
.
78.
Ying
,
Z. G.
, and
Ni
,
Y. Q.
,
2017
, “
A Response-Adjustable Sandwich Beam With Harmonic Distribution Parameters Under Stochastic Excitations
,”
Int. J. Struct. Stab. Dyn.
,
17
(
7
), p.
1750075
.
You do not currently have access to this content.