The American Petroleum Institute (API) level II vibration stability analysis for impellers requires higher fidelity models to predict the dynamic forces of the whirling impeller. These forces are in turn required to predict the vibration stability, critical speeds, and steady-state vibration response of the shaft-bearing-seal-impeller system. A transient computational fluid dynamics (CFD)-based approach is proposed which is applicable to nonaxisymmetric turbomachinery components, such as the volute and/or diffuser vanes, unlike its predecessor models like the bulk-flow or the quasi-steady model. The key element of this approach is the recent advancements in mesh deformation techniques which permit less restrictive motion boundary conditions to be imposed on the whirling impeller. The results quantify the contributions of the volute and/or the diffuser to the total forces which guides the analyst on whether to include these components in the model. The numerical results obtained by this approach are shown to agree well with experimental measurements and to be superior to the earlier quasi-steady alternative in terms of accuracy. Furthermore, several volute shapes were designed and analyzed for the sensitivity of the solution to the geometrical properties of the volute. The design flow rotordynamic forces show a significant dependence on the presence of the volutes in the model, with the specific shape of the volute having a lesser influence. The dimensionless forces are shown to be almost independent of the spin speed.

References

References
1.
Childs
,
D. W.
,
2013
,
Turbomachinery Rotordynamics With Case Studies
,
Minter Spring
,
Wellborn, TX
.
2.
API
,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry Services
,” American Petroleum Institute, Washington, DC, Standard No.
API 617
.http://www.api.org/~/media/files/publications/whats%20new/617_e8%20pa.pdf
3.
Ehrich
,
F. F.
,
Spakovszky
,
Z. S.
,
Martinez-Sanchez
,
M.
,
Song
,
S. J.
,
Wisler
,
D. C.
,
Storace
,
A. F.
,
Shin
,
H. W.
, and
Beacher
,
B. F.
,
2001
, “
Unsteady Flow and Whirl-Inducing Forces in Axial-Flow Compressors—Part II: Analysis
,”
ASME J. Turbomach.
,
123
(
3
), pp.
446
452
.
4.
Alford
,
J. S.
,
1965
, “
Protecting Turbomachinery From Self-Excited Rotor Whirl
,”
ASME J. Eng. Power
,
87
(
4
), pp.
333
344
.
5.
Childs
,
D. W.
,
1989
, “
Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Rotordynamic Calculations
,”
ASME J. Vib. Acoust.
,
111
(
3
), pp.
216
225
.
6.
Untaroiu
,
A.
,
Throckmorton
,
A. L.
,
Patel
,
S. M.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Olsen
,
D. B.
,
2005
, “
Numerical and Experimental Analysis of an Axial Flow Left Ventricular Assist Device: The Influence of the Diffuser on Overall Pump Performance
,”
Artif. Organs
,
29
(
7
), pp.
581
591
.
7.
Suzuki
,
T.
,
Prunieres
,
R.
,
Horiguchi
,
H.
,
Tsukiya
,
T.
,
Taenaka
,
Y.
, and
Tsujimoto
,
Y.
,
2007
, “
Measurements of Rotordynamic Forces on an Artificial Heart Pump Impeller
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1422
1427
.
8.
Chamieh
,
D. S.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1985
, “
Experimental Measurements of Hydrodynamic Radial Forces and Stiffness Matrices for a Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
107
(
3
), pp.
307
315
.
9.
Ohashi
,
H.
, and
Shoji
,
H.
,
1987
, “
Lateral Fluid Forces on Whirling Centrifugal Impeller (2nd Report: Experiment in Vaneless Diffuser)
,”
ASME J. Fluids Eng.
,
109
(
2
), pp.
100
106
.
10.
Ehrich
,
F.
,
1993
, “
Rotor Whirl Forces Induced by the Tip Clearance Effect in Axial Flow Compressors
,”
14th Biennial ASME Design Technical Conference on Mechanical Vibration and Noise
, Albuquerque, NM, Sept. 19–22, pp.
7
16
.
11.
Williams
,
J. P.
, and
Childs
,
D. W.
,
1991
, “
Influence of Impeller Shroud Forces on Turbopump Rotor Dynamics
,”
ASME J. Vib. Acoust.
,
113
(
4
), pp.
508
515
.
12.
Adkins
,
D.
, and
Brennen
,
C.
,
1988
, “
Analyses of Hydrodynamic Radial Forces on Centrifugal Pump Impellers
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
20
28
.
13.
Tsujimoto
,
Y.
,
Acosta
,
A. J.
, and
Brennen
,
C. E.
,
1988
, “
Theoretical Study of Fluid Forces on a Centrifugal Impeller Rotating and Whirling in a Volute
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
3
), pp.
263
269
.
14.
Childs
,
D. W.
,
1991
, “
Centrifugal-Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing
,”
ASME J. Vib. Acoust.
,
113
(
2
), pp.
209
218
.
15.
Schobeiri
,
M. T.
, and
Ghoreyshi
,
S. M.
,
2015
, “
The Ultrahigh Efficiency Gas Turbine Engine With Stator Internal Combustion
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021506
.
16.
Jafari
,
M. M.
,
Atefi
,
G.
,
Khalesi
,
J.
, and
Soleymani
,
A.
,
2012
, “
A New Conjugate Heat Transfer Method to Analyze a 3D Steam Cooled Gas Turbine Blade With Temperature-Dependent Material Properties
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
5
), pp.
1309
1320
.
17.
Jafari
,
M. M.
,
Atefi
,
G. A.
, and
Khalesi
,
J.
,
2012
, “
Advances in Nonlinear Stress Analysis of a Steam Cooled Gas Turbine Blade
,”
Latin Am. Appl. Res.
,
42
(
2
), pp.
167
175
.http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932012000200010
18.
Baskharone
,
E. A.
, and
Hensel
,
S. J.
,
1991
, “
A Finite-Element Perturbation Approach to Fluid/Rotor Interaction in Turbomachinery Elements—Part 2: Application
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
362
367
.
19.
Moore
,
J. J.
, and
Palazzolo
,
A. B.
,
2001
, “
Rotordynamic Force Prediction of Whirling Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
910
918
.
20.
Moore
,
J. J.
,
Ransom
,
D. L.
, and
Viana
,
F.
,
2011
, “
Rotordynamic Force Prediction of Centrifugal Compressor Impellers Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p. 042504.
21.
Kim
,
E.
, and
Palazzolo
,
A.
,
2016
, “
Rotordynamic Force Prediction of a Shrouded Centrifugal Pump Impeller-Part I: Numerical Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031014
.
22.
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2017
, “
Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031002
.
23.
Ohashi
,
H.
,
Sakurai
,
A.
, and
Nishihama
,
J.
,
1989
, “
Influence of Impeller and Diffuser Geometries on the Lateral Fluid Forces of Whirling Centrifugal Impeller
,”
NASA Lewis Research Center Rotordynamic Instability Problems in High-Performance Turbomachinery
, pp.
285
306
.https://ntrs.nasa.gov/search.jsp?R=19890013536
24.
Jery
,
B.
,
1987
, “
Experimental Study of Unsteady Hydrodynamic Force Matrices on Whirling Centrifugal Pump Impellers
,”
Ph.D. dissertation
, California Institute of Technology, Pasadena, CA.https://thesis.library.caltech.edu/1144/
25.
Baskharone
,
E. A.
, and
Hensel
,
S. J.
,
1991
, “
A Finite-Element Perturbation Approach to Fluid/Rotor Interaction in Turbomachinery Elements—Part 1: Theory
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
353
361
.
26.
CFTurbo
,
2017
, “
CFTurbo User Manual
,” CFTurbo GmbH, Dresden, Germany.
27.
Jery
,
B.
,
Brennen
,
C. E.
,
Caughey
,
T. K.
, and
Acosta
,
A.
,
1985
, “
Forces on Centrifugal Pump Impellers
,”
Second International Pump Symposium
, College Station, TX, pp.
21
32
.https://authors.library.caltech.edu/107/
28.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
2nd ed.
,
Springer
, Berlin.
29.
Makay
,
E.
, and
Barrett
,
J.
,
1984
, “
Changes in Hydraulic Component Geometries Greatly Increased Power Plant Availability and Reduced Maintenance Costs: Case Histories
,”
First International Pump Symposium
, pp.
85
100
.https://oaktrust.library.tamu.edu/handle/1969.1/164377
30.
Bolleter
,
U.
,
Wyss
,
A.
,
Welte
,
I.
, and
Stuerchler
,
R.
,
1987
, “
Measurement of Hydrodynamic Interaction Matrices of Boiler Feed Pump Impellers
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
109
(
2
), pp.
144
151
.
31.
Guelich
,
J. F.
, and
Bolleter
,
U.
,
1992
, “
Pressure Pulsations in Centrifugal Pumps
,”
ASME J. Vib. Acoust.
,
114
(
2
), pp.
272
279
.
32.
ANSYS
,
2017
, “
ANSYS User Manual
,” ANSYS Inc., Canonsburg, PA.
33.
Ghoreyshi
,
S. M.
, and
Schobeiri
,
M. T.
,
2017
, “
Numerical Simulation of the Multistage Ultra-High Efficiency Gas Turbine Engine, UHEGT
,”
ASME
Paper No. GT2017-65029.
34.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
041010
.
35.
Nikparto
,
A.
, and
Schobeiri
,
M. T.
,
2018
, “
Combined Numerical and Experimental Investigations of Heat Transfer of a Highly Loaded Low-Pressure Turbine Blade Under Periodic Inlet Flow Condition
,”
Proc. Inst. Mech. Eng., Part A
, epub.
36.
Untaroiu
,
A.
,
Morgan
,
N.
,
Hayrapetian
,
V.
, and
Schiavello
,
B.
,
2017
, “
Dynamic Response Analysis of Balance Drum Labyrinth Seal Groove Geometries Optimized for Minimum Leakage
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021014
.
37.
DaqiqShirazi
,
M.
,
Torabi
,
R.
,
Riasi
,
A.
, and
Nourbakhsh
,
S.
,
2017
, “
The Effect of Wear Ring Clearance on Flow Field in the Impeller Sidewall Gap and Efficiency of a Low Specific Speed Centrifugal Pump
,”
Proc. Inst. Mech. Eng., Part C
, epub.
38.
ANSYS
,
2017
, “
ANSYS CFX-Solver Theory Guide
,” ANSYS Inc., Canonsburg, PA.
39.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
,
3rd ed.
,
CRC Press
, Boca Raton, FL.
40.
Kim
,
E.
, and
Palazzolo
,
A.
,
2016
, “
Rotordynamic Force Prediction of a Shrouded Centrifugal Pump Impeller—Part II: Stability Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031015
.
41.
Franz
,
R.
, and
Arndt
,
N.
,
1986
, “
Measurements of Hydrodynamic Forces on the Impeller of the HPOTP of the SSME
,” California Institute of Technology, Pasadena, CA, Report No.
E249.2
.https://authors.library.caltech.edu/12315/
42.
Ohashi
,
H.
, and
Shoji
,
H.
,
1984
, “
Lateral Fluid Forces Acting on a Whirling Centrifugal Impeller in Vaneless and Vaned Diffuser
,”
NASA Lewis Research Center Rotordynamic Instability Problems in High-Performance Turbomachinery
, pp.
109
122
.https://ntrs.nasa.gov/search.jsp?R=19850005814
43.
Guinzburg
,
A.
,
Brennen
,
C. E.
,
Acosta
,
A. J.
, and
Caughey
,
T. K.
,
1993
, “
The Effect of Inlet Swirl on the Rotordynamic Shroud Forces in a Centrifugal Pump
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
287
293
.
44.
Mortazavi
,
F.
,
Riasi
,
A.
, and
Nourbakhsh
,
A.
,
2017
, “
Numerical Investigation of Back Vane Design and Its Impact on Pump Performance
,”
ASME J. Fluids Eng.
,
139
(
12
), pp.
121104
121109
.
45.
Shoji
,
H.
, and
Ohashi
,
H.
,
1987
, “
Lateral Fluid Forces on Whirling Centrifugal Impeller (1st Report: Theory)
,”
ASME J. Fluids Eng.
,
109
(
2
), pp.
94
99
.
46.
Wachel
,
J. C.
, and
Von Nimitz
,
W. W.
,
1981
, “
Ensuring the Reliability of Offshore Gas Compression Systems
,”
J. Pet. Technol.
,
33
(
11
), pp. 2252–2260.
You do not currently have access to this content.