This paper develops an adjustable high-static-low-dynamic (AHSLD) vibration isolator with a widely variable stiffness. By adjusting deformations of its horizontal springs, the natural frequency of the isolator can be substantially changed starting from a quasi-zero value. In this paper, the nonlinear static and dynamic analyses of the AHSLD isolator are presented. Effects of horizontal adjustments on the variation range of the stiffness and nonlinear dynamic characteristics are investigated. Good performance of the stiffness variation is validated by free-vibration tests. The wide-range variable stiffness from 0.33 N/mm to 23.2 N/mm is achieved in tests, which changes the natural frequency of the isolator from an ultra-low value of 0.72 Hz to 5.99 Hz. Besides, its nonlinear dynamic characteristics are also experimentally identified by applying the Hilbert transform. Both analytical and experimental results demonstrate the weakly hardening nonlinearity in the tested AHSLD isolator, which will not degrade its performance in practical applications.

References

References
1.
Guan
,
X.
, and
Zheng
,
G.
,
2012
, “
Integrated Design of Space Telescope Vibration Isolation and Attitude Control
,”
12th European Conference on Spacecraft Structures, Materials and Environmental Testing
, Noordwijk, The Netherlands, Mar. 20–23, p.
22
.
2.
Wie
,
B.
, and
Byun
,
K.
,
1989
, “
New Generalized Structural Filtering Concept for Active Vibration Control Synthesis
,”
J. Guid., Control, Dyn.
,
12
(
2
), pp.
147
154
.
3.
Wie
,
B.
, and
Bernstein
,
D. S.
,
1992
, “
Benchmark Problems for Robust Control Design
,”
J. Guid., Control, Dyn.
,
15
(
5
), pp.
1057
1059
.
4.
Liu
,
C.
,
Jing
,
X.
,
Daley
,
S.
, and
Li
,
F.
,
2015
, “
Recent Advances in Micro-Vibration Isolation
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
55
80
.
5.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2009
, “
Antagonistic Variable Stiffness Elements
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1746
1758
.
6.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2011
, “
Performance Analysis of a Semi-Active Mount Made by a New Variable Stiffness Spring
,”
J. Sound Vib.
,
330
(
12
), pp.
2733
2746
.
7.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2013
, “
Introducing a New Semi-Active Engine Mount Using Force Controlled Variable Stiffness
,”
Veh. Syst. Dyn.
,
51
(
5
), pp.
721
736
.
8.
Jeong
,
H.-K.
,
Lee
,
J.
,
Han
,
J.-H.
, and
Wereley
,
N. M.
,
2016
, “
Design of Frequency-Tunable Mesh Washer Isolators Using Shape Memory Alloy Actuators
,”
J. Intell. Mater. Syst. Struct.
,
27
(
9
), pp.
1265
1280
.
9.
Zhou
,
N.
, and
Liu
,
K.
,
2010
, “
A Tunable High-Static–Low-Dynamic Stiffness Vibration Isolator
,”
J. Sound Vib.
,
329
(
9
), pp.
1254
1273
.
10.
Wu
,
T.-H.
, and
Lan
,
C.-C.
,
2016
, “
A Wide-Range Variable Stiffness Mechanism for Semi-Active Vibration Systems
,”
J. Sound Vib.
,
363
, pp.
18
32
.
11.
Carrella
,
A.
,
Brennan
,
M.
, and
Waters
,
T.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
12.
Carrella
,
A.
,
Brennan
,
M.
,
Waters
,
T.
, and
Lopes
,
V.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.
13.
Abolfathi
,
A.
,
Brennan
,
M. J.
,
Waters
,
T.
, and
Tang
,
B.
,
2015
, “
On the Effects of Mistuning a Force-Excited System Containing a Quasi-Zero-Stiffness Vibration Isolator
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
044502
.
14.
Xu
,
D.
,
Zhang
,
Y.
,
Zhou
,
J.
, and
Lou
,
J.
,
2014
, “
On the Analytical and Experimental Assessment of the Performance of a Quasi-Zero-Stiffness Isolator
,”
J. Vib. Control
,
20
(
15
), pp.
2314
2325
.
15.
Lan
,
C.-C.
,
Yang
,
S.-A.
, and
Wu
,
Y.-S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
.
16.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2011
, “
A Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat
,”
J. Sound Vib.
,
330
(
26
), pp.
6311
6335
.
17.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2013
, “
Experimental Investigation of a Vibration Isolation System Using Negative Stiffness Structure
,”
Int. J. Mech. Sci.
,
70
, pp.
99
112
.
18.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Vibration Isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
.
19.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
20.
Carrella
,
A.
, and
Friswell
,
M.
,
2008
, “
A Passive Vibration Isolator Incorporating a Composite Bistable Plate
,”
Sixth EUROMECH Nonlinear Dynamics Conference
, Saint Petersburg, Russia, June 30–July 4.
21.
Shaw
,
A.
,
Neild
,
S.
,
Wagg
,
D.
,
Weaver
,
P.
, and
Carrella
,
A.
,
2013
, “
A Nonlinear Spring Mechanism Incorporating a Bistable Composite Plate for Vibration Isolation
,”
J. Sound Vib.
,
332
(
24
), pp.
6265
6275
.
22.
Ishida
,
S.
,
Uchida
,
H.
,
Shimosaka
,
H.
, and
Hagiwara
,
I.
,
2017
, “
Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031015
.
23.
Ishida
,
S.
,
Suzuki
,
K.
, and
Shimosaka
,
H.
,
2017
, “
Design and Experimental Analysis of Origami-Inspired Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051004
.
24.
Shan
,
Y.
,
Wu
,
W.
, and
Chen
,
X.
,
2015
, “
Design of a Miniaturized Pneumatic Vibration Isolator With High-Static-Low-Dynamic Stiffness
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
045001
.
25.
Wang
,
J.
, and
Gu
,
S. S.
,
2005
,
Principles of Automatic Control
,
Metallurgical Industry Press
,
Beijing, China
.
26.
Worden
,
K.
, and
Tomlinson
,
G. R.
,
2000
,
Nonlinearity in Structural Dynamics: Detection, Identification and Modelling
,
CRC Press
, Boca Raton, FL.
27.
Hu
,
Z.
, and
Zheng
,
G.
,
2016
, “
A Combined Dynamic Analysis Method for Geometrically Nonlinear Vibration Isolators With Elastic Rings
,”
Mech. Syst. Signal Process.
,
76–77
, pp.
634
648
.
28.
Wang
,
X.
, and
Zheng
,
G.
,
2016
, “
Two-Step Transfer Function Calculation Method and Asymmetrical Piecewise-Linear Vibration Isolator Under Gravity
,”
J. Vib. Control
,
22
(
13
), pp.
2973
2991
.
29.
Wang
,
X.
,
Guan
,
X.
, and
Zheng
,
G.
,
2016
, “
Inverse Solution Technique of Steady-State Responses for Local Nonlinear Structures
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
1085
1096
.
30.
Capecchi
,
D.
, and
Vestroni
,
F.
,
1990
, “
Periodic Response of a Class of Hysteretic Oscillators
,”
Int. J. Nonlinear Mech.
,
25
(
2–3
), pp.
309
317
.
31.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
.
32.
Feldman
,
M.
,
1997
, “
Non-Linear Free Vibration Identification Via the Hilbert Transform
,”
J. Sound Vib
,
208
(
3
), pp.
475
489
.
33.
Feldman
,
M.
,
2006
, “
Time-Varying Vibration Decomposition and Analysis Based on the Hilbert Transform
,”
J. Sound Vib.
,
295
(
3–5
), pp.
518
530
.
34.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S. R.
,
1999
, “
A New View of Nonlinear Water Waves: The Hilbert Spectrum
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
417
457
.
35.
Rato
,
R.
,
Ortigueira
,
M. D.
, and
Batista
,
A.
,
2008
, “
On the HHT, Its Problems, and Some Solutions
,”
Mech. Syst. Signal Process.
,
22
(
6
), pp.
1374
1394
.
36.
Hu
,
Z.
,
Wang
,
X.
, and
Zheng
,
G.
,
2017
, “
Free Vibration Identification of the Geometrically Nonlinear Isolator With Elastic Rings by Using Hilbert Transform
,”
Nonlinear Dynamics
, Vol. 1,
Springer
, Cham, Switzerland, p.
69
.
You do not currently have access to this content.