This paper presents a broadband vibration energy harvester (VEH) which consists of a monostable Duffing oscillator connected to an electromagnetic generator via a mechanical motion rectifier. The mechanical motion rectifier converts the bidirectional vibratory motion of the oscillator induced by ambient environment vibrations into unidirectional rotation of the generator and causes the harvester to periodically switch between a large- and small-inertia system, resulting in nonlinearity in inertia. By means of analytical and numerical methods, this inertia nonlinearity is shown to have two advantages. First, it allows for more stiffness nonlinearity without inducing nonuniqueness of energy branches and enhances bandwidths of energy harvesting. The effect of mitigating nonuniqueness of energy branches occurs to steady-state and transient responses of the harvester and is experimentally verified by a prototype. The experimental results show a nearly 50% increase in the half power bandwidth via mechanical motion rectification (MMR). Second, it enlarges the basin of attraction of the high-energy branch when multiple energy branches are present. A numerical example shows that a more than 50% increase in the basin area can be achieved via MMR.

References

References
1.
Williams
,
C.
, and
Yates
,
R. B.
,
1996
, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators A: Phys.
,
52
(
1–3
), pp.
8
11
.
2.
Williams
,
C.
,
Shearwood
,
C.
,
Harradine
,
M.
,
Mellor
,
P.
,
Birch
,
T.
, and
Yates
,
R.
,
2001
, “
Development of an Electromagnetic Micro-Generator
,”
IEE Proc.-Circuits, Devices Syst.
,
148
(
6
), pp.
337
342
.
3.
Roundy
,
S.
, and
Wright
,
P. K.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), p.
1131
.
4.
Dutoit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.-G.
,
2005
, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
,
71
(
1
), pp.
121
160
.
5.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), p.
R175
.
6.
Shu
,
Y.
, and
Lien
,
I.
,
2006
, “
Analysis of Power Output for Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
15
(
6
), p.
1499
.
7.
Cook-Chennault
,
K.
,
Thambi
,
N.
, and
Sastry
,
A.
,
2008
, “
Powering MEMS Portable Devices a Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
17
(
4
), p.
043001
.
8.
Zuo
,
L.
, and
Zhang
,
P.-S.
,
2013
, “
Energy Harvesting, Ride Comfort, and Road Handling of Regenerative Vehicle Suspensions
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011002
.
9.
Rome
,
L. C.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
(
5741
), pp.
1725
1728
.
10.
Donelan
,
J. M.
,
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J.
,
Weber
,
D.
, and
Kuo
,
A. D.
,
2008
, “
Biomechanical Energy Harvesting: Generating Electricity During Walking With Minimal User Effort
,”
Science
,
319
(
5864
), pp.
807
810
.
11.
Zuo
,
L.
, and
Cui
,
W.
,
2013
, “
Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051018
.
12.
Scruggs
,
J.
, and
Jacob
,
P.
,
2009
, “
Harvesting Ocean Wave Energy
,”
Science
,
323
(
5918
), pp.
1176
1178
.
13.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2009
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.
14.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2011
, “
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011001
.
15.
Harne
,
R.
, and
Wang
,
K.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
16.
Burrow
,
S.
, and
Clare
,
L.
,
2007
, “
A Resonant Generator With Non-Linear Compliance for Energy Harvesting in High Vibrational Environments
,”
IEEE International Electric Machines and Drives Conference
(
IEMDC'07
), Antalya, Turkey, May 3–5, pp.
715
720
.
17.
Mann
,
B.
, and
Sims
,
N.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.
18.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2009
, “
Reversible Hysteresis for Broadband Magnetopiezoelastic Energy Harvesting
,”
Appl. Phys. Lett.
,
95
(
17
), p.
174103
.
19.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.
20.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.
21.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.
22.
Masana
,
R.
, and
Daqaq
,
M.
,
2012
, “
Energy Harvesting in the Super-Harmonic Frequency Region of a Twin-Well Oscillator
,”
J. Appl. Phys.
,
111
(
4
), p.
044501
.
23.
Blokhina
,
E.
,
El Aroudi
,
A.
,
Alarcon
,
E.
, and
Galayko
,
D.
,
2016
,
Nonlinearity in Energy Harvesting Systems
,
Springer
, Berlin.
24.
Soliman
,
M.
,
Abdel-Rahman
,
E.
,
El-Saadany
,
E.
, and
Mansour
,
R.
,
2008
, “
A Wideband Vibration-Based Energy Harvester
,”
J. Micromech. Microeng.
,
18
(
11
), p.
115021
.
25.
Gu
,
L.
,
2011
, “
Low-Frequency Piezoelectric Energy Harvesting Prototype Suitable for the MEMS Implementation
,”
Microelectron. J.
,
42
(
2
), pp.
277
282
.
26.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Investigation of a MEMS Piezoelectric Energy Harvester System With a Frequency-Widened-Bandwidth Mechanism Introduced by Mechanical Stoppers
,”
Smart Mater. Struct.
,
21
(
3
), p.
035005
.
27.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
28.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
Wiley
, Hoboken, NJ.
29.
Zhou
,
S.
,
Cao
,
J.
,
Inman
,
D. J.
,
Liu
,
S.
,
Wang
,
W.
, and
Lin
,
J.
,
2015
, “
Impact-Induced High-Energy Orbits of Nonlinear Energy Harvesters
,”
Appl. Phys. Lett.
,
106
(
9
), p.
093901
.
30.
Mallick
,
D.
,
Amann
,
A.
, and
Roy
,
S.
,
2016
, “
Surfing the High Energy Output Branch of Nonlinear Energy Harvesters
,”
Phys. Rev. Lett.
,
117
(
19
), p.
197701
.
31.
Lan
,
C.
,
Tang
,
L.
, and
Qin
,
W.
,
2017
, “
Obtaining High-Energy Responses of Nonlinear Piezoelectric Energy Harvester by Voltage Impulse Perturbations
,”
Eur. Phys. J. Appl. Phys.
,
79
(
2
), p.
20902
.
32.
Udani
,
J. P.
, and
Arrieta
,
A. F.
,
2017
, “
Sustaining High-Energy Orbits of Bi-Stable Energy Harvesters by Attractor Selection
,”
Appl. Phys. Lett.
,
111
(
21
), p.
213901
.
33.
Liang
,
C.
,
Wu
,
Y.
, and
Zuo
,
L.
,
2016
, “
Broadband Pendulum Energy Harvester
,”
Smart Mater. Struct.
,
25
(
9
), p.
095042
.
34.
Liang
,
C.
,
Ai
,
J.
, and
Zuo
,
L.
,
2017
, “
Design, Fabrication, Simulation and Testing of an Ocean Wave Energy Converter With Mechanical Motion Rectifier
,”
Ocean Eng.
,
136
, pp.
190
200
.
35.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.
36.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K.-W.
,
2014
, “
Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061005
.
37.
Tai
,
W.-C.
, and
Zuo
,
L.
,
2017
, “
On Optimization of Energy Harvesting From Base-Excited Vibration
,”
J. Sound Vib.
,
411
, pp.
47
59
.
38.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.
39.
Guckenheimer
,
J.
, and
Holmes
,
P. J.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, Vol.
42
,
Springer Science & Business Media
, Berlin.
You do not currently have access to this content.