It is confirmed experimentally that in case of a rotor with crack, multiple harmonics are generated when the rotor revolves at a particular frequency. Only few modeling techniques successfully predict this particular behavior of the cracked rotor. It is observed in this research that modeling cracked rotors using conventional finite element methods cannot predict this particular behavior successfully. A nonlinear dynamic model of the flexible rotor with ball bearings is developed using discrete mass spring damper elements combined with an existing model of the crack to truly predict this confirmed experimental behavior. Certain crack detection techniques based on the steady-state response work well on this basic concept of the multiharmonics generation due to nonlinearities caused by cracks in the rotor. The presence of ball bearings, rotor-coupling misalignment, rotor-stator rub, and rotor bow can also cause significant nonlinearities in the overall system. These additional nonlinearities render these crack detection techniques to lose their effectiveness. Our work justifies through simulations that the Jeffcott rotors are the over simplified version of real-life rotor-bearing systems. Hence, these crack detection techniques cannot be efficiently applied for condition monitoring of real-life rotor-bearing systems. The proposed model also helps to understand that the presence of flexible bearing supports affects the dynamics of the system considerably and negatively affects the effectiveness of these crack detection techniques.

References

1.
Chen
,
Y. S.
, and
Zhang
,
H. B.
,
2011
, “
Review and Prospect on the Research of Dynamics of the Aero-Engine System
,”
Acta Aeronaut. Astronaut. Sin.
,
32
(
8
), pp.
1371
1391
.
2.
Wauer
,
J.
,
1990
, “
Dynamics of Cracked Rotors: Literature Survey
,”
Appl. Mech. Rev.
,
43
(
1
), pp.
13
17
.
3.
Gasch
,
R.
,
1993
, “
A Survey of the Dynamic Behavior of a Simple Rotating Shaft With a Transverse Crack
,”
J. Sound Vib.
,
160
(
2
), pp.
313
332
.
4.
Dimarogonas
,
A.
,
1996
, “
Vibration of Cracked Structures: A State of the Art Review
,”
Eng. Fract. Mech.
,
55
(
5
), pp.
831
857
.
5.
Jun
,
O. S.
,
Eun
,
H. J.
,
Earmme
,
Y. Y.
, and
Lee
,
C. W.
,
1992
, “
Modelling and Vibration Analysis of a Simple Rotor With Breathing Crack
,”
J. Sound Vib.
,
155
(
2
), pp.
273
290
.
6.
Gao
,
J. M.
, and
Zhu
,
X. M.
,
2009
, “
Research on the Breathing Model of Crack on Rotating Shaft
,”
Chin. J. Appl. Mech.
,
9
(
1
), pp.
108
112
.
7.
Patel
,
T. H.
, and
Darpe
,
A. K.
,
2008
, “
Influence of Crack Breathing Model on Nonlinear Dynamics of a Cracked Rotor
,”
J. Sound Vib.
,
311
(
3–5
), pp.
953
972
.
8.
Cheng
,
L.
,
Li
,
N.
,
Chen
,
X. F.
, and
He
,
Z. J.
,
2011
, “
The Influence of Crack Breathing and Imbalance Orientation Angle on the Characteristics of the Critical Speed of a Cracked Rotor
,”
J. Sound Vib.
,
330
(
9
), pp.
2031
2048
.
9.
Sinou
,
J. J.
,
2007
, “
Effects of a Crack on the Stability of a Non-Linear Rotor System
,”
Int. J. Nonlinear Mech.
,
42
(
7
), pp.
959
972
.
10.
Chen
,
C. P.
,
Dai
,
L. M.
, and
Fu
,
Y. M.
,
2007
, “
Nonlinear Response and Dynamic Stability of a Cracked Rotor
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
6
), pp.
1023
1037
.
11.
Han
,
Q. K.
, and
Chu
,
F. L.
,
2012
, “
Parametric Instability of a Rotor-Bearing System With Two Breathing Transverse Cracks
,”
Eur. J. Mech. A
,
36
, pp.
180
190
.
12.
Han
,
Q. K.
,
Zhao
,
J. S.
, and
Chu
,
F. L.
,
2012
, “
Dynamic Analysis of a Geared Rotor System Considering a Slant Crack on the Shaft
,”
J. Sound Vib.
,
331
(
26
), pp.
5803
5823
.
13.
Darpe
,
A. K.
,
2007
, “
Coupled Vibrations of a Rotor With Slant Crack
,”
J. Sound Vib.
,
305
(
1–2
), pp.
172
193
.
14.
Wang
,
K. S.
,
Guo
,
D.
, and
Heyns
,
P. S.
,
2012
, “
The Application of Order Tracking for Vibration Analysis of a Varying Speed Rotor With a Propagating Transverse Crack
,”
Eng. Failure Anal.
,
21
, pp.
91
101
.
15.
Sinou
,
J. J.
, and
Lees
,
A. W.
,
2007
, “
A Non-Linear Study of a Cracked Rotor
,”
Eur. J. Mech. A
,
26
(
1
), pp.
152
170
.
16.
Sinou
,
J. J.
, and
Lees
,
A. W.
,
2005
, “
The Influence of Cracks in Rotating Shafts
,”
J. Sound Vib.
,
285
(
4–5
), pp.
1015
1037
.
17.
AL-Shudeifat
,
M. A.
,
Butcher
,
E. A.
, and
Stern
,
C. R.
,
2010
, “
General Harmonic Balance Solution of a Cracked Rotor-Bearing-Disk System for Harmonic and Sub-Harmonic Analysis: Analytical and Experimental Approach
,”
Int. J. Eng. Sci.
,
48
(
10
), pp.
921
935
.
18.
Lin
,
Y. L.
, and
Chu
,
F. L.
,
2009
, “
Numerical and Experimental Investigations of Flexural Vibrations of a Rotor System With Transverse or Slant Crack
,”
J. Sound Vib.
,
324
(
1–2
), pp.
107
125
.
19.
Darpe
,
A. K.
,
Gupta
,
K.
, and
Chawla
,
A.
,
2003
, “
Dynamics of a Two-Crack Rotor
,”
J. Sound Vib.
,
259
(
3
), pp.
649
675
.
20.
Sekhar
,
A. S.
,
2008
, “
Multiple Cracks Effects and Identification
,”
Mech. Syst. Signal Process.
,
22
(
4
), pp.
845
878
.
21.
He
,
Q.
,
Peng
,
H. C.
,
Zhai
,
P. C.
, and
Zhen
,
Y. X.
,
2016
, “
The Effects of Unbalance Orientation Angle on the Stability of the Lateral Torsion Coupling Vibration of an Accelerated Rotor With a Transverse Breathing Crack
,”
Mech. Syst. Signal Process.
,
75
, pp.
330
344
.
22.
Sanches
,
F. D.
, and
Pederiva
,
R.
,
2016
, “
Theoretical and Experimental Identification of the Simultaneous Occurrence of Unbalance and Shaft Bow in a Laval Rotor
,”
Mech. Mach. Theory
,
101
, pp.
209
221
.
23.
Prabhakar
,
S.
,
Sekhar
,
A. S.
, and
Mohanty
,
A. R.
,
2002
, “
Crack Versus Coupling Misalignment in a Transient Rotor System
,”
J. Sound Vib.
,
256
(
4
), pp.
773
786
.
24.
Ishida
,
Y.
,
Ikeda
,
T.
, and
Yamamoto
,
T.
,
1990
, “
Nonlinear Forced Oscillations Caused by Quadratic Nonlinearity in a Rotating Shaft System
,”
ASME J. Vib. Acoust.
,
112
(
3
), pp.
288
297
.
25.
Ji
,
Z.
, and
Zu
,
J. W.
,
1998
, “
Method of Multiple Scales for Vibration Analysis of Rotor–Shaft Systems With Non-Linear Bearing Pedestal Model
,”
J. Sound Vib.
,
218
(
2
), pp.
293
305
.
26.
Chen
,
G.
,
2009
, “
Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported on Ball Bearing
,”
ASME J. Vib. Acoust.
,
131
(
6
), p.
061001
.
27.
Sinou
,
J. J.
,
2009
, “
Non-Linear Dynamics and Contacts of an Unbalanced Flexible Rotor Supported on Ball Bearings
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1713
1732
.
28.
Villa
,
C.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2008
, “
Stability and Vibration Analysis of a Complex Flexible Rotor Bearing System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
4
), pp.
804
821
.
29.
Hou
,
L.
,
Chen
,
Y.
,
Cao
,
Q.
, and
Lu
,
Z.
,
2016
, “
Nonlinear Vibration Analysis of a Cracked Rotor-Ball Bearing System During Flight Maneuvers
,”
Mech. Mach. Theory
,
105
, pp.
515
528
.
30.
Bachschmid
,
N.
,
Pennacchi
,
P.
,
Tanzi
,
E.
, and
Vania
,
A.
,
2000
, “
Identification of Transverse Crack Position and Depth in Rotor Systems
,”
Meccanica
,
35
(
6
), pp.
563
582
.
31.
Markert
,
R.
,
Platz
,
R.
, and
Seidler
,
M.
,
2001
, “
Model Based Fault Identification in Rotor Systems by Least Squares Fitting
,”
Int. J. Rotating Mach.
,
7
(
5
), pp.
311
321
.
32.
Kulesza
,
Z.
, and
Sawicki
,
J. T.
,
2011
, “
Auxiliary State Variables for Rotor Crack Detection
,”
J. Vib. Control
,
17
(
6
), pp.
857
872
.
33.
Sawicki
,
J. T.
,
Friswell
,
M.
,
Kulesza
,
Z.
,
Wroblewski
,
A. D.
, and
Lekki
,
J. D.
,
2011
, “
Detecting Cracked Rotors Using Auxiliary Harmonic Excitation
,”
J. Sound Vib.
,
330
(
7
), pp.
1365
1381
.
34.
Sawícki
,
J. T.
,
Storozhev
,
D. L.
, and
Lekki
,
J. D.
,
2011
, “
Exploration of NDE Properties of AMB Supported Rotors for Structural Damage Detection
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102509
.
35.
Kulesza
,
Z.
,
2014
, “
Dynamic Behavior of Cracked Rotor Subjected to Multi-Sine Excitation
,”
J. Sound Vib.
,
333
(
5
), pp.
1369
1378
.
36.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1990
,
Rotordynamics—Prediction in Engineering
,
Wiley
,
New York
.
37.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2004
, “
Non-Linear Dynamic Behaviors of Rolling Element Bearings Due to Surface Waviness
,”
J. Sound Vib.
,
272
(
3–5
), pp.
557
580
.
38.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Effect of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
,
238
(
5
), pp.
723
756
.
39.
Al-Shudeifat
,
M. A.
, and
Eric
,
A. B.
,
2011
, “
New Breathing Functions for the Transverse Breathing Crack of the Cracked Rotor System: Approach for Critical and Subcritical Harmonic Analysis
,”
J. Sound Vib.
,
330
(
3
), pp.
526
544
.
40.
Mayes
,
I. W.
, and
Davies
,
W. G. R.
,
1984
, “
Analysis of the Response of a Multi-Rotor Bearing System Containing a Transverse Crack in a Rotor
,”
ASME J. Vib. Acoust.
,
106
(
1
), pp.
139
145
.
41.
Mccormack
,
A. S.
,
Godfrey
,
K. R.
, and
Flower
,
J. O.
,
1994
, “
The Detection of and Compensation for Nonlinear Effects Using Periodic Input Signals
,” International Conference on Control (
Control'94
), Coventry, UK, Mar. 21–24, pp.
297
302
.
42.
Schoukens
,
J.
,
Pintelon
,
R.
,
Rolain
,
Y.
, and
Dobrowiecki
,
T.
,
2001
, “
Frequency Response Function Measurements in the Presence of Nonlinear Distortions
,”
Automatica
,
37
(
6
), pp.
939
946
.
You do not currently have access to this content.