Precisions of localization are a function of the size of an array. A kind of parasitoid fly, Ormia ochracea, performs an extraordinary directional hearing ability despite its tiny-scaled auditory organ. In this paper, vibration modes and transfer functions of the Ormia ochracea's ear model were calculated, and the phase difference amplification in responses are analyzed to investigate the directional hearing mechanism. A novel three-element bionic model is proposed for spatial sound source localization for small distance-wavelength ratios. The amplification of the phase difference of this model is verified. In order to realize the bionic localization model, based on electric-mechanic analogy method, a system that consists of a triangular acoustic array and a bionic coupling circuit is designed and tested. Frequency responses of the circuit output, as a means of transfer function of the system, are taken into estimation of the source directions. The result has shown that this circuit design has better performance in estimating the direction of sound sources compared to the uncoupled array with same size.

References

1.
Wang
,
W.
,
2010
,
Machine Audition: Principles, Algorithms and Systems: Principles, Algorithms and Systems
,
IGI Global
,
Hershey, PA
.
2.
Begault
,
D. R.
,
Rumsey
,
F.
, and
Society
,
A. E.
,
2004
,
An Anthology of Articles on Spatial Sound Techniques: Multichannel Audio Technologies
,
Audio Engineering Society
,
New York
.
3.
Benesty
,
J.
,
Chen
,
J.
, and
Huang
,
Y.
,
2008
,
Microphone Array Signal Processing
,
Springer
,
Berlin
.
4.
Aljanaideh
,
K. F.
, and
Bernstein
,
D. S.
,
2017
, “
Experimental Application of Time-Domain Transmissibility Identification to Fault Detection and Localization in Acoustic Systems
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021017
.
5.
Ho
,
K. C.
, and
Sun
,
M.
,
2008
, “
Passive Source Localization Using Time Differences of Arrival and Gain Ratios of Arrival
,”
IEEE Trans. Signal Process.
,
56
(
2
), pp.
464
477
.
6.
K
,
H.
, and
V
,
M.
,
1996
, “
Two Decades of Array Signal Processing Research: The Parametric Approach
,”
IEEE Signal Process. Mag.
,
13
(
4
), pp.
67
94
.
7.
Chen
,
J. C.
,
Yao
,
K.
, and
Hudson
,
R. E.
,
2002
, “
Source Localization and Beamforming
,”
IEEE Signal Process. Mag.
,
19
(
2
), pp.
30
39
.
8.
Carlile
,
S.
,
1996
, “
The Physical and Psychophysical Basis of Sound Localization
,”
Virtual Auditory Space: Generation and Applications
,
Springer
,
Berlin
, pp.
27
78
.
9.
Blauert
,
J.
,
1997
,
Spatial Hearing: The Psychophysics of Human Sound Localization
,
MIT Press
,
Cambridge, MA
.
10.
Popper
,
A. N.
, and
Fay
,
R. R.
,
2005
,
Sound Source Localization
,
Springer
,
Berlin
.
11.
Robert
,
D.
,
Read
,
M. P.
, and
Hoy
,
R. R.
,
1994
, “
The Tympanal Hearing Organ of the Parasitoid Fly Ormia Ochracea (Diptera, Tachinidae, Ormiini)
,”
Cell Tissue Res.
,
275
(
1
), pp.
63
78
.
12.
Robert
,
D.
, and
Willi
,
U.
,
2000
, “
The Histological Architecture of the Auditory Organs in the Parasitoid Fly Ormia Ochracea
,”
Cell Tissue Res.
,
301
(
3
), pp.
447
457
.
13.
Mason
,
A. C.
,
Oshinsky
,
M. L.
, and
Hoy
,
R. R.
,
2001
, “
Hyperacute Directional Hearing in a Microscale Auditory System
,”
Nature
,
410
(
6829
), pp.
686
690
.
14.
Robert
,
D.
,
Miles
,
R. N.
, and
Hoy
,
R. R.
,
1996
, “
Directional Hearing by Mechanical Coupling in the Parasitoid Fly Ormia Ochracea
,”
J. Comp. Physiol. A
,
179
(
1
), pp.
29
44
.
15.
Vedurmudi
,
A. P.
,
Young
,
B. A.
, and
van Hemmen
,
J. L.
,
2016
, “
Internally Coupled Ears: Mathematical Structures and Mechanisms Underlying Ice
,”
Biol. Cybern.
,
110
(
4–5
), pp.
359
382
.
16.
Robert
,
D.
,
Miles
,
R. N.
, and
Hoy
,
R. R.
,
1992
, “
A Novel Hearing Organ in an Acoustic Parasitoid Fly
,”
J. Acoust. Soc. Am.
,
92
(
4
), p.
2422
.
17.
Robert
,
D.
,
Hoy
,
R. R.
, and
Miles
,
R. N.
,
1994
, “
A Novel Mechanism for Directional Hearing in a Parasitoid Fly
,”
J. Acoust. Soc. Am.
,
96
(
5
), p.
3296
.
18.
Robert
,
D.
,
Miles
,
R. N.
, and
Hoy
,
R. R.
,
1998
, “
Tympanal Mechanics in the Parasitoid Fly Ormia Ochracea: Intertympanal Coupling During Mechanical Vibration
,”
J. Comp. Physiol. A
,
183
(
4
), pp.
443
452
.
19.
Miles
,
R. N.
,
Robert
,
D.
, and
Hoy
,
R. R.
,
1995
, “
Mechanically Coupled Ears for Directional Hearing in the Parasitoid Fly Ormia Ochracea
,”
J. Acoust. Soc. Am.
,
98
(
6
), pp.
3059
3070
.
20.
Miles
,
R. N.
, and
Hoy
,
R. R.
,
2006
, “
The Development of a Biologically-Inspired Directional Microphone for Hearing Aids
,”
Audiol. Neurotol.
,
11
(
2
), pp.
86
94
.
21.
Ono
,
N.
,
Saito
,
A.
, and
Ando
,
S.
,
2003
, “
Design and Experiments of Bio-Mimicry Sound Source Localization Sensor With Gimbal-Supported Circular Diaphragm
,”
International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems,
Boston, MA, June 8–12, pp.
935
938
.
22.
Liu
,
H. J.
,
Yu
,
M.
, and
Zhang
,
X. M.
,
2008
, “
Biomimetic Optical Directional Microphone With Structurally Coupled Diaphragms
,”
Appl. Phys. Lett.
,
93
(
24
), p.
243902
.
23.
Liu
,
H.
,
Chen
,
Z.
, and
Yu
,
M.
,
2008
, “
Biology-Inspired Acoustic Sensors for Sound Source Localization
,”
Proc. SPIE-Int. Soc. Opt. Eng.
,
6932
(
1
), p.
69322Y
.
24.
Lisiewski
,
A. P.
,
Liu
,
H. J.
,
Yu
,
M.
,
Currano
,
L.
, and
Gee
,
D.
,
2011
, “
Fly-Ear Inspired Micro-Sensor for Sound Source Localization in Two Dimensions
,”
J. Acoust. Soc. Am.
,
129
(
5
), p.
EL166
.
25.
Touse
,
M.
,
Sinibaldi
,
J.
,
Simsek
,
K.
,
Catterlin
,
J.
, and
Harrison
,
S.
,
2010
, “
Fabrication of a Microelectromechanical Directional Sound Sensor With Electronic Readout Using Comb Fingers
,”
Appl. Phys. Lett.
,
96
(
17
), p.
173701
.
26.
Kuntzman
,
M. L.
,
Gloria Lee
,
J.
,
Hewa-Kasakarage
,
N. N.
,
Kim
,
D.
, and
Hall
,
N. A.
,
2013
, “
Micromachined Piezoelectric Microphones With In-Plane Directivity
,”
Appl. Phys. Lett.
,
102
(
5
), p.
054109
.
27.
Lee
,
J. H.
,
Reinhall
,
P. G.
, and
Yoon
,
H. S.
,
2015
, “
Modeling and Characterization of Bio-Inspired Hydro-Acoustic Sensor
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031021
.
28.
Wang
,
Q. S.
,
Rao
,
Z.
, and
Ta
,
N.
,
2009
, “
Bionic Structure of Mechanically Coupled Diaphragms for Sound Source Localization
,”
Wseas Trans. Syst.
,
8
(
7
), pp.
855
865
.
29.
Zhu
,
X.
,
Yang
,
M.
,
Na
,
T.
, and
Rao
,
Z.
,
2013
, “
Study of Bionic Acoustic Localization With Circuit Analogy Design
,”
20th International Congress on Sound and Vibration, Bangkok
, Thailand, July 7–11.
30.
Yang
,
M.
,
Zhu
,
X.
,
Zhang
,
Y.
,
Ta
,
N.
, and
Rao
,
Z.
,
2016
, “
Parameter Study of Time-Delay Magnification in a Biologically Inspired, Mechanically Coupled Acoustic Sensor Array
,”
J. Acoust. Soc. Am.
,
140
(
5
), pp.
3854
3861
.
31.
Zhang
,
Y.
,
Yang
,
M.
,
Zhu
,
X.
,
Ta
,
N.
, and
Rao
,
Z.
,
2017
, “
A Biologically Inspired Coupled Microphone Array for Sound Source Bearing Estimation
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011019
.
You do not currently have access to this content.