The analysis of the influence of cracks on the dynamics of bladed disks is critical for design, failure prognosis, and structural health monitoring. Predicting the dynamics of cracked bladed disks is computationally challenging for two reasons: (1) the model size is quite large and (2) the piecewise-linear nonlinearity caused by contact eliminates the use of linear analysis tools. Recently, a technique referred to as the X-Xr approach was developed to efficiently reduce the model size of the cracked bladed disks. The method employs relative coordinates to describe the motion of crack surfaces such that an effective model reduction can be achieved using single sector calculations. More recently, a method referred to as the generalized bilinear amplitude approximation (BAA) was developed to approximate the amplitude and frequency of piecewise-linear nonlinear systems. This paper modifies the generalized BAA method and combines it with the X-Xr approach to efficiently predict the dynamics of the cracked bladed disks. The combined method is able to construct the reduced-order model (ROM) of full disks using single-sector models only and estimate the amplitude and frequency with a significantly reduced computational effort. The proposed approach is demonstrated on a three degrees-of-freedom (DOF) spring–mass system and a cracked bladed disk.

References

References
1.
Allemang
,
R.
,
1980
, “Investigation of Some Multiple Input/Output Frequency Response Experimental Modal Analysis Techniques,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
2.
Ewins
,
D. J.
,
1984
,
Modal Testing: Theory and Practice
,
Research Studies Press
,
Taunton, UK
.
3.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
,
1998
, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
,
30
(
2
), pp.
91
105
.
4.
Farrar
,
C. R.
,
Doebling
,
S. W.
, and
Nix
,
D. A.
,
2001
, “
Vibration-Based Structural Damage Identification
,”
Philos. Trans. R. Soc. London A
,
359
(
1778
), pp.
131
149
.
5.
Friswell
,
M. I.
,
2007
, “
Damage Identification Using Inverse Methods
,”
Philos. Trans. R. Soc. London A
,
365
(
1851
), pp.
393
410
.
6.
Ha
,
N. V.
, and
Golinval
,
J.-C.
,
2010
, “
Damage Localization in Linear-Form Structures Based on Sensitivity Investigation for Principal Component Analysis
,”
J. Sound Vib.
,
329
(
21
), pp.
4550
4566
.
7.
Jiang
,
L. J.
, and
Wang
,
K. W.
,
2009
, “
An Experiment-Based Frequency Sensitivity Enhancing Control Approach for Structural Damage Detection
,”
Smart Mater. Struct.
,
18
(
6
), pp.
1
12
.
8.
Brownjohn
,
J. M. W.
,
De Stefano
,
A.
,
Xu
,
Y.-L.
,
Wenzel
,
H.
, and
Aktan
,
A. E.
,
2011
, “
Vibration-Based Monitoring of Civil Infrastructure: Challenges and Successes
,”
J. Civ. Struct. Health Monit.
,
1
(
3–4
), pp.
79
95
.
9.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
,
1996
, “Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-13070-MS
.https://www.osti.gov/biblio/249299
10.
Castanier
,
M. P.
,
Óttarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.
11.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1999
, “
Reduced Order Modeling and Vibration Analysis of Mistuned Bladed Disk Assemblies With Shrouds
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
515
522
.
12.
D'Souza
,
K.
, and
Epureanu
,
B. I.
,
2012
, “
A Statistical Characterization of the Effects of Mistuning in Multistage Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p. 012503.
13.
Gan
,
Y.
,
Mayer
,
J. L.
,
D'Souza
,
K. X.
, and
Epureanu
,
B. I.
,
2017
, “
A Mode-Accelerated X-Xr (MAX) Method for Complex Structures With Large Blends
,”
Mech. Syst. Signal Process.
,
93
, pp.
1
15
.
14.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2017
, “
Multistage Blisk and Large Mistuning Modeling Using Fourier Constraint Modes and PRIME
,”
ASME J. Eng. Gas Turbines Power
, accepted.
15.
Moon
,
J.
, and
Cho
,
D.
,
1992
, “
A Component Mode Synthesis Applied to Mechanisms for an Investigation of Vibration
,”
J. Sound Vib.
,
157
(
1
), pp.
67
79
.
16.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
17.
Friswell
,
M. I.
,
Penny
,
J. E. T.
, and
Garvey
,
S. D.
,
1995
, “
Using Linear Model Reduction to Investigate the Dynamics of Structures With Local Non-Linearities
,”
Mech. Syst. Signal Process.
,
9
(
3
), pp.
317
328
.
18.
Ma
,
O.
, and
Wang
,
J.
,
2007
, “
Model Order Reduction for Impact-Contact Dynamics Simulations of Flexible Manipulators
,”
Robotica
,
25
(
4
), pp.
397
407
.
19.
Bennighof
,
J. K.
, and
Lehoucq
,
R. B.
,
2004
, “
An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics
,”
SIAM J. Sci. Comput.
,
25
(
6
), pp.
2084
2106
.
20.
Theodosiou
,
C.
, and
Natsiavas
,
S.
,
2009
, “
Dynamics of Finite Element Structural Models With Multiple Unilateral Constraints
,”
Int. J. Non-Linear Mech.
,
44
(
4
), pp.
371
382
.
21.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
.
22.
Irons
,
B.
,
1965
, “
Structural Eigenvalue Problems: Elimination of Unwanted Variables
,”
AIAA J.
,
3
(
5
), pp.
961
962
.
23.
O'Callahan
,
J.
,
Avitabile
,
P.
, and
Riemer
,
R.
,
1989
, “
System Equivalent Reduction Expansion Process (SEREP)
,”
Seventh International Modal Analysis Conference
, Las Vegas, NV, Jan. 30–Feb. 3, pp.
29
37
.
24.
Sairajan
,
K. K.
, and
Aglietti
,
G. S.
,
2012
, “
Robustness of System Equivalent Reduction Expansion Process on Spacecraft Structure Model Validation
,”
AIAA J.
,
50
(
11
), pp.
2376
2388
.
25.
Marinescu
,
O.
,
Epureanu
,
B.
, and
Banu
,
M.
,
2011
, “
Reduced Order Models of Mistuned Cracked Bladed Disks
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051014
.
26.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2005
, “
Super- and Sub-Harmonic Response Calculations for a Torsional System With Clearance Nonlinearity Using the Harmonic Balance Method
,”
J. Sound Vib.
,
281
(
3–5
), pp.
965
993
.
27.
Poudou
,
O.
,
2007
, “Modeling and Analysis of the Dynamics of Dry-Friction-Damped Structural Systems,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
28.
Saito
,
A.
,
Castanier
,
M. P.
,
Pierre
,
C.
, and
Poudou
,
O.
,
2009
, “
Efficient Nonlinear Vibration Analysis of the Forced Response of Rotating Cracked Blades
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), p.
011005
.
29.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2017
, “
A Generalized Bilinear Amplitude and Frequency Approximation for Piecewise-Linear Nonlinear Systems With Gaps or Prestress
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2403
2416
.
30.
Jung
,
C.
,
D'Souza
,
K.
, and
Epureanu
,
B. I.
,
2014
, “
Nonlinear Amplitude Approximation for Bilinear Systems
,”
J. Sound Vib.
,
333
(
13
), pp.
2909
2919
.
31.
Castanier, M. P.
, and
Pierre, C.
, 2006, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(2), pp. 384–396.
32.
O'Hara
,
P. J.
, and
Hollkamp
,
J. J.
,
2014
, “
Modeling Vibratory Damage With Reduced-Order Models and the Generalized Finite Element Method
,”
J. Sound Vib.
,
333
(
24
), pp.
6637
6650
.
33.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech.
,
85
(
EM3
), pp.
67
94
.
You do not currently have access to this content.