Hysteresis exists widely in intelligent materials, such as piezoelectric and giant magnetostrictive ones, and it significantly affects the precision of vibration control when a controlled object moves at a range of micrometers or even smaller. Many measures must be implemented to eliminate the influence of hysteresis. In this work, the hysteresis characteristic of a proposed piezoelectric actuator (PEA) is tested and modeled based on the adaptive neuro fuzzy inference system (ANFIS). A linearization control method with feedforward hysteresis compensation and proportional–integral–derivative (PID) feedback is established and simulated. A linear quadratic Gaussian with loop transfer recovery (LQG/LTR) regulator is then designed as a vibration controller. Verification experiments are conducted to evaluate the effectiveness of the control method in vibration isolation. Experiment results demonstrate that the proposed vibration control system with a feedforward feedback linearization controller and an LQG/LTR regulator can significantly improve the performance of a vibration isolation system in the frequency range of 5–200 Hz with low energy consumption.

References

References
1.
Vaillon
,
L.
, and
Philippe
,
C.
,
1999
, “
Passive and Active Microvibration Control for Very High Pointing Accuracy Space Systems
,”
Smart Mater. Struct.
,
8
(
6
), pp.
719
728
.
2.
Zhao
,
W.
,
2006
, “
The Spacecraft Micro Vibration Environment Analysis and Measurement Technology Development
,”
Spacecraft Environ. Eng.
,
23
(
4
), pp.
210
214
.
3.
Zhang
,
S.
,
Schmidt
,
R.
, and
Qin
,
X.
,
2015
, “
Active Vibration Control of Piezoelectric Bonded Smart Structures Using PID Algorithm
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
305
313
.
4.
Tzou
,
H. S.
,
Lee
,
H. J.
, and
Arnold
,
S. M.
,
2004
, “Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems,”
Mech. Adv. Mater. Struct.
, 11(4–5), pp.
367
393
.
5.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S. O. R.
,
2007
, “A Survey of Control Issues Nanopositioning,”
Trans. Control Syst. Technol.
,
15
(
5
), pp.
802
823
.
6.
Arafa
,
M.
, and
Baz
,
A.
,
2004
, “
On the Nonlinear Behavior of Piezoelectric Actuators
,”
J. Vib. Control
,
3
(
3
), pp.
387
398
.
7.
Crawley
,
E. F.
, and
Luis
,
J. D.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.
8.
Jiles
,
C. D.
, and
Atherton
,
L. D.
,
1986
, “
Theory of Ferromagnetic Hysteresis
,”
J. Magn. Magn. Mater.
,
61
(
1–2
), pp.
48
60
.
9.
Song
,
G.
,
Zhao
,
J.
,
Zhou
,
X.
, and
De Abreu-García
,
J. A.
,
2005
, “
Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model
,”
IEEE/ASME Trans. Mechatronics
,
10
(
2
), pp.
198
209
.
10.
Ge
,
P.
, and
Jouaneh
,
M.
,
1995
, “
Modeling Hysteresis in Piezoceramic Actuators
,”
Precis. Eng.
,
17
(
3
), pp.
211
221
.
11.
Smith
,
R. C.
,
2005
,
Smart Material Systems: Model Development
, Society for Industrial & Applied Mathematics,
Philadelphia, PA
, Chap. 3.
12.
Mayergoyz
,
I. D.
,
1986
, “
Mathematical Models of Hysteresis
,”
Phys. Rev. Lett.
,
56
(
15
), pp.
1518
1544
.
13.
Sve Ko
,
R.
, and
Kusi
,
D.
,
2015
, “
Feedforward Neural Network Position Control of a Piezoelectric Actuator Based on a Bat Search Algorithm
,”
Expert Syst. Appl.
,
42
(
13
), pp.
5416
5423
.
14.
Xiao
,
S.
, and
Li
,
Y.
,
2014
, “
Dynamic Compensation and Control for Piezoelectric Actuators Based on the Inverse Bouc–Wen Model
,”
Rob. Comput.-Integr. Manuf.
,
30
(
1
), pp.
47
54
.
15.
Tzen
,
J.
,
Jeng
,
S.
, and
Chieng
,
W.
,
2003
, “
Modeling of Piezoelectric Actuator for Compensation and Controller Design
,”
Precis. Eng.
,
27
(
1
), pp.
70
86
.
16.
Li
,
W.
, and
Chen
,
X.
,
2013
, “
Compensation of Hysteresis in Piezoelectric Actuators Without Dynamics Modeling
,”
Sens. Actuators, A
,
199
, pp.
89
97
.
17.
Tang
,
H.
, and
Li
,
Y.
,
2015
, “
Feedforward Nonlinear PID Control of a Novel Micromanipulator Using Preisach Hysteresis Compensator
,”
Rob. Comput-Integr. Manuf.
,
34
, pp.
124
132
.
18.
Ru
,
C.
,
Chen
,
L.
,
Shao
,
B.
,
Rong
,
W.
, and
Sun
,
L.
,
2009
, “
A Hysteresis Compensation Method of Piezoelectric Actuator: Model, Identification and Control
,”
Control Eng. Pract.
,
17
(
9
), pp.
1107
1114
.
19.
Varadarajan
,
S.
,
Chandrashekhara
,
K.
, and
Agarwal
,
S.
,
2000
, “
LQG/LTR-Based Robust Control of Composite Beams With Piezoelectric Devices
,”
J. Vib. Control
,
6
(
4
), pp.
607
630
.
20.
Li
,
G.
,
2014
, “
Modeling and LQG/LTR Control for Power and Axial Power Difference of Load-Follow PWR Core
,”
Ann. Nucl. Energy
,
68
, pp.
193
203
.
21.
Nader
,
J.
, 2010,
Piezoelectric-Based Vibration Control
,
National Defense Industry Press
,
Beijing, China
, Chap. 3.
22.
Zhang
,
Y.
,
Chen
,
Z.
, and
Jiao
,
Y.
,
2015
, “
A Hybrid Vibration Isolator: Design, Control, and Experiments
,”
Proc. Inst. Mech. Eng., Part C
,
25
(
1
), pp.
77
89
.
23.
Senthilkumar
,
A.
, and
Ajay-D-Vimal Raj
,
P.
,
2015
, “
ANFIS and MRAS-Pi Controllers Based Adaptive-UPQC for Power Quality Enhancement Application
,”
Electr. Power Syst. Res.
,
126
, pp.
1
11
.
24.
Azadeh
,
A.
,
Saberi
,
M.
,
Anvari
,
M.
,
Azaron
,
A.
, and
Mohammadi
,
M.
,
2011
, “
An Adaptive Network Based Fuzzy Inference System–Genetic Algorithm Clustering Ensemble Algorithm for Performance Assessment and Improvement of Conventional Power Plants
,”
Expert Syst. Appl.
,
38
(
3
), pp.
2224
2234
.
25.
Kozáková
,
A.
, and
Hypiusová
,
M.
,
2015
, “
LQG/LTR Based Reference Tracking for a Modular Servo
,”
J. Electr. Syst. Inf. Technol.
,
2
(
3
), pp.
347
357
.
You do not currently have access to this content.