Magnetorheological elastomer (MRE)-based semi-active vibration mitigation device demands a mathematical representation of its smart characteristics. To model the material behavior over broadband frequency, the simplicity of the mathematical formulation is very important. Material modeling of MRE involves the theory of viscoelasticity, which describes the properties intermediate between the solid and the liquid. In the present study, viscoelastic property of MRE is modeled by an integer and fractional order derivative approaches. Integer order-based model comprises of six parameters, and the fraction order model is represented by five parameters. The parameters of the model are identified by minimizing the error between the response from the model and the dynamic compression test data. Performance of the model is evaluated with respect to the optimized parameters estimated at different sets of regularly spaced arbitrary input frequencies. A linear and quadratic interpolation function is chosen to generalize the variation of parameters with respect to the magnetic field and frequency. The predicted response from the model revealed that the fractional order model describes the properties of MRE in a simplest form with reduced number of parameters. This model has a greater control over the real and imaginary part of the complex stiffness, which facilitates in choosing a better interpolating function to improve the accuracy. Furthermore, it is confirmed that the realistic assessment on the performance of a model is based on its ability to reproduce the results obtained from optimized parameters.

References

References
1.
Tillema
,
H. G.
,
2003
, “Noise Reduction of Rotating Machinery by Viscoelastic Bearing Supports,”
Doctoral thesis
, University of Twente, Enschede, The Netherlands.
2.
Li
,
Y.
,
Li
,
J.
,
Tian
,
T.
, and
Li
,
W.
,
2014
, “
A Highly Adjustable Magnetorheological Elastomer Base Isolator for Applications of Real-Time Adaptive Control
,”
Smart Mater. Struct.
,
23
(
12
), p.
129501
.
3.
Kim
,
Y. K.
,
Koo
,
J. H.
,
Kim
,
K. S.
, and
Kim
,
S.
,
2010
, “
Vibration Isolation Strategies Using Magneto-Rheological Elastomer for a Miniature Cryogenic Cooler in Space Application
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM)
, Montreal, QC, Canada, July 6–9, pp.
1203
1206
.
4.
Jalili
,
N.
,
2002
, “
A Comparative Study and Analysis of Semi-Active Vibration-Control Systems
,”
ASME J. Vib. Acoust.
,
124
(
4
), pp.
593
605
.
5.
Yoshioka
,
H.
,
Ramallo
,
J. C.
, and
Spencer
,
B. F.
,
2002
, “
SmartBase Isolation Strategies Employing Magnetorheological Dampers
,”
J. Eng. Mech.
,
128
(
5
), pp.
540
551
.
6.
Stelzer
,
G. J.
,
Schulz
,
M. J.
,
Kim
,
J.
, and
Allemang
,
R. J.
,
2003
, “
A Magnetorheological Semi-Active Isolator to Reduce Noise and Vibration Transmissibility in Automobiles
,”
J. Intell. Mater. Syst. Struct.
,
14
(
12
), pp.
743
765
.
7.
Eem
,
S. H.
,
Jung
,
H. J.
, and
Koo
,
J. H.
,
2011
, “
Application of MR Elastomers for Improving Seismic Protection of Base-Isolated Structure
,”
IEEE Trans. Magn.
,
47
(
10
), pp.
2901
2904
.
8.
Li
,
Y.
, and
Li
,
J.
,
2015
, “
Highly Adjustable Base Isolator Utilizing Magnetorheological Elastomer: Experimental Testing and Modeling
,”
ASME J. Vib. Acoust.
,
137
(1), p.
011009
.
9.
Li
,
Y.
,
Li
,
J.
,
Li
,
W.
, and
Samali
,
B.
,
2013
, “
Development and Characterization of a Magnetorheological Elastomer Based Adaptive Seismic Isolator
,”
Smart Mater. Struct.
,
22
(
3
), p.
035005
.
10.
Behrooz
,
M.
,
Wang
,
X.
, and
Gordaninejad
,
F.
,
2014
, “
Performance of New Magnetorheological Elastomer Isolation System
,”
Smart Mater. Struct.
,
23
(
4
), p.
045014
.
11.
Lokander
,
M.
, and
Stenberg
,
B.
,
2003
, “
Performance of Isotropic Magnetorheological Rubber Materials
,”
Polym. Test.
,
22
(
6
), pp.
677
680
.
12.
Zajac
,
P.
,
Kaleta
,
J.
,
Lewandowski
,
D.
, and
Gasperowicz
,
A.
,
2010
, “
Isotropic Magnetorheological Elastomers With Thermoplastic Matrices: Structure, Damping Properties and Testing
,”
Smart Mater. Struct.
,
19
(4), p.
045014
.
13.
Ge
,
L.
,
Fan
,
Y.
, and
Xuan
,
S.
,
2013
, “
Preparation and Mechanical Properties of the Magnetorheological Elastomer Based on Natural Rubber/Rosin Glycerin Hybrid Matrix
,”
Smart Mater. Struct.
,
22
(11), p.
115029
.
14.
Zhu
,
J. T.
,
Xu
,
Z. D.
, and
Guo
,
Y. Q.
,
2013
, “
Experimental and Modeling Study on Magnetorheological Elastomers With Different Matrices
,”
J. Mater. Civ. Eng.
,
25
(11), pp.
1762
1771
.
15.
Hegde
,
S.
,
Kiran
,
K.
, and
Gangadharan
,
K. V.
,
2014
, “
A Novel Approach to Investigate Effect of Magnetic Field on Dynamic Properties of Natural Rubber Based Isotropic Thick Magnetorheological Elastomers in Shear Mode
,”
J. Cent. South Univ. Technol.
,
22
(
7
), pp.
2612
2619
.
16.
Xu
,
Z. D.
,
Liao
,
Y. X.
,
Ge
,
T.
, and
Xu
,
C.
,
2016
, “
Experimental and Theoretical Study of Viscoelastic Dampers With Different Matrix Rubbers
,”
J. Eng. Mech.
,
142
(8), p.
04016051
.
17.
Wang
,
Y.
,
Hu
,
Y.
,
Chen
,
L.
,
Gong
,
X.
,
Jiang
,
W.
,
Zhang
,
P.
, and
Chen
,
Z.
,
2006
, “
Effects of Rubber/Magnetic Particle Interactions on the Performance of Magnetorheological Elastomers
,”
Polym. Test.
,
25
(
2
), pp.
262
267
.
18.
Yang
,
J.
, Du, H., Li. W., Li, Y., Li, J., Sun, S., and Deng, H.,
2013
, “
Experimental Study and Modeling of a Novel Magnetorheological Elastomer Isolator
,”
Smart Mater. Struct.
,
22
(
11
), p.
117001
.
19.
Li
,
W. H.
,
Zhou
,
Y.
, and
Tian
,
T. F.
,
2010
, “
Viscoelastic Properties of MR Elastomers Under Harmonic Loading
,”
Rheol. Acta
,
49
(
7
), pp.
733
740
.
20.
Lakes
,
R.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
New York
.
21.
Sasso
,
M.
,
Palmieri
,
G.
, and
Amodio
,
D.
,
2011
, “
Application of Fractional Derivative Models in Linear Viscoelastic Problems
,”
Mech. Time-Depend. Mater.
,
15
(
4
), pp.
367
387
.
22.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
23.
Zhang
,
J.
, and
Richards
,
C. M.
,
2006
, “
Dynamic Analysis and Parameter Identification of a Single Mass Elastomeric Isolation System Using a Maxwell-Voigt Model
,”
ASME J. Vib. Acoust.
,
128
(
6
), pp.
713
721
.
24.
Park
,
S. W.
,
2001
, “
Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control
,”
Int. J. Solids Struct.
,
38
(44–45), pp.
8065
8092
.
25.
Kim
,
S. Y.
, and
Lee
,
D. H.
,
2009
, “
Identification of Fractional-Derivative-Model Parameters of Viscoelastic Materials From Measured FRFs
,”
J. Sound Vib.
,
324
(
3–5
), pp.
570
586
.
26.
Kumar
,
A.
,
Stickland
,
A. D.
, and
Scales
,
P. J.
,
2012
, “
Viscoelasticity of Coagulated Alumina Suspensions
,”
Korea-Aust. Rheol. J.
,
24
(
2
), pp.
105
111
.
27.
Ju
,
B. X.
,
Yu
,
M.
,
Fu
,
J.
,
Yang
,
Q.
,
Liu
,
X. Q.
, and
Zheng
,
X.
,
2012
, “
A Novel Porous Magnetorheological Elastomer: Preparation and Evaluation
,”
Smart Mater. Struct.
,
21
(
3
), p.
035001
.
28.
Zhu
,
J. T.
,
Xu
,
Z. D.
, and
Guo
,
Y. Q.
,
2012
, “
Magnetoviscoelasticity Parametric Model of an MR Elastomer Vibration Mitigation Device
,”
Smart Mater. Struct.
,
21
(
7
), p.
075034
.
29.
Gordaninejad
,
F.
,
Wang
,
X.
, and
Mysore
,
P.
,
2012
, “
Behavior of Thick Magnetorheological Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
23
(
9
), pp.
1033
1039
.
30.
Koo
,
J. H.
,
Khan
,
F.
,
Jang
,
D.
, and
Jung
,
H.
,
2010
, “
Dynamic Characterization and Modeling of Magneto-Rheological Elastomers Under Compressive Loadings
,”
Smart Mater. Struct.
,
19
(
11
), p.
117002
.
31.
Popp
,
K. M.
,
Kroger
,
M.
,
Li
,
W. H.
,
Zhang
,
X. Z.
, and
Kosasih
,
P. B.
,
2009
, “
MRE Properties Under Shear and Squeeze Modes and Applications
,”
J. Intell. Mater. Syst. Struct.
,
21
(15), pp.
1471
1477
.
32.
Mori
,
A.
,
Moss
,
P. J.
,
Cooke
,
N.
, and
Carr
,
A. J.
,
1999
, “
The Behavior of Bearings Used for Seismic Isolation Under Shear and Axial Load
,”
Earthquake Spectra
,
15
(
2
), pp.
199
224
.
33.
Kallio
,
M.
,
Lindroos
,
T.
,
Aalto
,
S.
,
Järvinen
,
E.
,
Kärnä
,
T.
, and
Meinander
,
T.
,
2007
, “
Dynamic Compression Testing of a Tunable Spring Element Consisting of a Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
16
(
2
), pp.
506
514
.
34.
Song
,
H. J.
,
Wereley
,
N. M.
,
Filer
,
J. A.
, and
Bell
,
R. C.
,
2010
, “
Stiffness and Damping in Fe, Co, and Ni Nanowire-Based Magnetorheological Elastomeric Composites
,”
IEEE Trans. Magn.
,
46
(
6
), pp.
2275
2277
.
35.
Gil-Negrete
,
N.
,
Vinolas
,
J.
, and
Kari
,
L.
,
2009
, “
A Nonlinear Rubber Material Model Combining Fractional Order Viscoelasticity and Amplitude Dependent Effects
,”
ASME J. Appl. Mech.
,
76
(1), p.
011009
.
36.
Pritz
,
T.
,
1996
, “
Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials
,”
J. Sound Vib.
,
195
(
1
), pp.
103
115
.
37.
Lectez
,
A. S.
, and
Verron
,
E.
,
2016
, “
Influence of Large Strain Preloads on the Viscoelastic Response of Rubber-Like Materials Under Small Oscillations
,”
Int. J. Non-Linear Mech.
,
81
, pp.
1
7
.
38.
Markovitz
,
H.
,
1977
, “
Boltzmann and the Beginnings of Linear Viscoelasticity
,”
Trans. Soc. Rheol.
,
21
(
3
), pp.
381
398
.
39.
Payne
,
A. R.
,
1966
, “Physical Properties of Natural Rubber,”
Master's thesis
, Durham University, Durham, UK.
40.
Emri
,
I.
, and
Gergesova
,
M.
,
2010
, “
Time-Dependent Behavior of Solid Polymers
,”
Rheology: Encyclopedia of Life Support Systems (EOLSS)
, Vol.
1
,
C.
Gallegos
, ed., Encyclopedia of Life Support Systems, Abu Dhabi, United Arab Emirates, pp.
247
330
.
41.
Aho
,
J.
,
2011
, “Rheological Characterization of Polymer Melts in Shear and Extension: Measurement Reliability and Data for Practical Processing,”
Doctoral thesis
, Tempere University of Technology, Tampere, Finland.
42.
Bruni
,
S.
, and
Collina
,
A.
,
2000
, “
Modelling the Viscoelastic Behaviour of Elastomeric Components: An Application to the Simulation of Train-Track Interaction
,”
Veh. Syst. Dyn.
,
34
(
4
), pp.
283
301
.
43.
Pritz
,
T.
,
2003
, “
Five-Parameter Fractional Derivative Model for Polymeric Damping Materials
,”
J. Sound Vib.
,
265
(5), pp.
935
952
.
44.
Rizzello
,
G.
,
Hodgins
,
M.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2015
, “
Dynamic Modeling and Experimental Validation of an Annular Dielectric Elastomer Actuator With a Biasing Mass
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011005
.
45.
Kaul
,
S.
,
2015
, “
Maxwell–Voigt and Maxwell Ladder Models for Multi-Degree-of-Freedom Elastomeric Isolation Systems
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021021
.
46.
Basdogon
,
I.
, and
Dikmen
,
E.
,
2011
, “
Modelling Viscoelastic Response of Vehicle Door Seal
,”
Exp. Tech.
,
35
(3), pp.
29
35
.
47.
Berg
,
M.
, and
Kari
,
L.
,
2003
, “
Nonlinear Isolator Dynamics at Finite Deformations: An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model
,”
Nonlinear Dyn.
,
33
(3), pp.
323
336
.
48.
Torvik
,
P. J.
, and
Bagley
,
R. L.
,
1983
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(2), pp.
294
298
.
49.
Koh
,
C. G.
, and
Kelly
,
J. M.
,
1990
, “
Application of Fractional Derivative to Seismic Analysis of Base Isolated Models
,”
Earthquake Eng. Struct. Dyn.
,
19
(
2
), pp.
229
241
.
50.
Eldred
,
L. B.
,
Baker
,
W. P.
, and
Palazotto
,
A. N.
,
1995
, “
Kelvin–Voigt Vs Fractional Derivative Model as Constitutive Relations for Viscoelastic Materials
,”
AIAA J.
,
33
(
3
), pp.
547
550
.
51.
Guo
,
F.
,
Du
,
C.
, and
Li
,
R.
,
2014
, “
Viscoelastic Parameter Model of Magnetorheological Elastomers Based on Abel Dashpot
,”
Adv. Mech. Eng.
,
6
, p.
629386
.
52.
Shen
,
J. J.
,
Li
,
C. G.
,
Wu
,
H. T.
, and
Kalantari
,
M.
,
2013
, “
Fractional Order Viscoelasticity in Characterization for Atrial Tissue
,”
Korea-Aust. Rheol. J.
,
25
(
2
), pp.
87
93
.
53.
Jolly
,
M. R. J.
,
Carlson
,
D. B.
,
Muñoz
,
C.
, and
Bullions
,
T. A.
,
1996
, “
The Magneto Viscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix
,”
J. Intell. Mater. Syst. Struct.
,
7
(
6
), pp.
613
622
.
54.
Shen
,
Y.
,
Golnaraghi
,
M. F.
, and
Heppler
,
G. R.
,
2004
, “
Experimental Research and Modeling of Magnetorheological Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
15
(
1
), pp.
27
35
.
55.
Davis
,
L. C.
,
1999
, “
Model of Magnetorheological Elastomers
,”
J. Appl. Phys.
,
85
(
6
), pp.
3348
3351
.
56.
Poojary
,
U. R.
,
Hegde
,
S.
, and
Gangadharan
,
K. V.
,
2016
, “
Dynamic Blocked Transfer Stiffness Method of Characterizing the Magnetic Field and Frequency Dependent Dynamic Viscoelastic Properties of MRE
,”
Korea-Aust. Rheol. J.
,
28
(
4
), pp.
301
313
.
57.
Thompson
,
J. D.
,
1998
, “
Developments of the Indirect Method for Measuring the High Frequency Dynamic Stiffness of Resilient Elements
,”
J. Sound Vib.
,
213
(
1
), pp.
169
188
.
58.
Lion
,
A.
, and
Kardelky
,
C.
,
2004
, “
The Payne Effect in Finite Viscoelasticity: Constitutive Modelling Based on Fractional Derivatives and Intrinsic Time Scales
,”
Int. J. Plast.
,
20
(
7
), pp.
1313
1345
.
59.
Stacer
,
R. G.
,
Hübner
,
C.
, and
Husband
,
D. M.
,
1990
, “
Binder/Filler Interaction and the Nonlinear Behavior of Highly-Filled Elastomers
,”
Rubber Chem. Technol.
,
63
(
4
), pp.
488
502
.
60.
Ginic
,
M.
,
Dutta
,
K. D.
,
Dimopoulos
,
M.
,
Choudhury
,
N. R.
, and
Matisons
,
G.
,
2000
, “
Viscoelastic Behaviour of Filled, and Unfilled, EPDM Elastomer
,”
Thermochim. Acta
,
357–358
, pp.
211
216
.
61.
Osman
,
M. A.
, and
Atallah
,
A.
,
2006
, “
Effect of the Particle Size on the Viscoelastic Properties of Filled Polyethylene
,”
Polymer
,
47
(
7
), pp.
2357
2368
.
62.
Xu
,
Z. D.
,
Xu
,
C.
, and
Hu
,
J.
,
2015
, “
Equivalent Fractional Kelvin Model and Experimental Study on Viscoelastic Damper
,”
J. Vib. Control
,
21
(
13
), pp.
2536
2552
.
63.
Berg
,
M.
,
1997
, “
A Model for Rubber Springs in the Dynamic Analysis of Rail Vehicles
,”
Proc. Inst. Mech. Eng., Part F
,
211
(
2
), pp.
95
108
.
64.
Chen
,
L.
, and
Jerrams
,
S.
,
2011
, “
A Rheological Model of the Dynamic Behavior of Magnetorheological Elastomers
,”
J. Appl. Phys.
,
110
(
1
), p.
013513
.
65.
Lijun
,
Z.
,
Zengliang
,
Y.
, and
Zhuoping
,
Y.
,
2010
, “Novel Empirical Model of Rubber Bushing in Automotive Suspension System,” Noise and Vibration Engineering International Conference (ISMA), Leuven, Belgium, Sept. 20–22, Paper No.
0170
.
66.
Dong
,
X.
,
Ma
,
N.
,
Qi
,
M.
,
Li
,
J.
,
Chen
,
R.
, and
Ou
,
J.
,
2012
, “
The Pressure-Dependent MR Effect of Magnetorheological Elastomers
,”
Smart Mater. Struct.
,
21
(
7
), p.
075014
.
67.
Furst
,
E. M.
, and
Gast
,
A. P.
,
2000
, “
Micromechanics of Magnetorheological Suspensions
,”
Phys. Rev. E
,
61
(
6
), pp.
6732
6739
.
68.
Spaldin
,
N. A.
,
2011
,
Magnetic Materials Fundamentals and Applications
,
Cambridge University Press
,
Cambridge, UK
.
69.
Liao
,
G.
,
Gong
,
X.
,
Xuan
,
S.
,
Guo
,
C.
, and
Zong
,
L.
,
2012
, “
Magnetic-Field-Induced Normal Force of Magnetorheological Elastomer Under Compression Status
,”
Ind. Eng. Chem. Res.
,
51
(
8
), pp.
3322
3328
.
70.
Nadeau
,
S.
, and
Champoux
,
Y.
,
2000
, “
Application of the Direct Complex Stiffness Method to Engine Mounts
,”
Exp. Tech.
,
24
(
3
), pp.
21
23
.
71.
Xu
,
Z.
, and
Chen
,
W.
,
2013
, “
A Fractional-Order Model on New Experiments of Linear Viscoelastic Creep of Hami Melon
,”
Int. J. Appl. Math. Comput. Sci.
,
66
(
5
), pp.
677
681
.
72.
Lewandowski
,
R.
, and
Chorazyczewski
,
B.
,
2010
, “
Identification of the Parameters of the Kelvin–Voigt and the Maxwell Fractional Models, Used to Modeling of Viscoelastic Dampers
,”
Comput. Struct.
,
88
(
1–2
), pp.
1
17
.
73.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.
74.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
1995
,
Theory and Design for Mechanical Measurements
,
Wiley
,
New York
.
75.
Wang
,
K.
, and
Tang
,
J.
,
2008
, “
Nonlinear High Precision Robust Control With Hysteresis Compensation
,”
Adaptive Structural Systems With Piezoelectric Transducer Circuitry
,
Springer Publishing
,
New York
.
76.
Norouzi
,
M.
,
Alehashem
,
S. M. S.
,
Vatandoost
,
H.
,
Ni
,
Y.
, and
Shahmardan
,
M. M.
,
2015
, “
A New Approach for Modeling of Magnetorheological Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
27
(8), pp.
1121
1135
.
You do not currently have access to this content.