We study first-crossing problem of two-degrees-of-freedom (2DOF) strongly nonlinear mechanical oscillators analytically. The excitation is the combination of a deterministic harmonic function and Gaussian white noises (GWNs). The generalized harmonic function is used to approximate the solutions of the original equations. Four cases are studied in terms of the types of resonance (internal or external or both). For each case, the method of stochastic averaging is used and the stochastically averaged Itô equations are obtained. A backward Kolmogorov (BK) equation is set up to yield the failure probability and a Pontryagin equation is set up to yield average first-crossing time (AFCT). A 2DOF Duffing-van der Pol oscillator is chosen as an illustrative example to demonstrate the effectiveness of the analytical method. Numerically analytical solutions are obtained and validated by digital simulation. It is shown that the proposed method has high efficiency while still maintaining satisfactory accuracy.

References

References
1.
Hamed
,
Y. S.
,
EL-Sayed
,
A. T.
, and
El-Zahar
,
E. R.
,
2016
, “
On Controlling the Vibrations and Energy Transfer in MEMS Gyroscope System With Simultaneous Resonance
,”
Nonlinear Dyn.
,
83
(
3
), pp.
1687
1704
.
2.
Shoeybi
,
M.
, and
Ghorashi
,
M.
,
2006
, “
Nonlinear Vibration Control of a System With Dry Friction and Viscous Damping Using the Saturation Phenomenon
,”
Nonlinear Dyn.
,
45
(
3–4
), pp.
249
272
.
3.
El-Bassiouny
,
A. F.
,
2005
, “
Internal Resonance of a Nonlinear Vibration Absorber
,”
Phys. Scr.
,
72
(
2–3
), pp.
203
211
.
4.
Wang
,
Y. R.
, and
Liang
,
T. W.
,
2015
, “
Application of Lumped-Mass Vibration Absorber on the Vibration Reduction of a Nonlinear Beam-Spring-Mass System With Internal Resonances
,”
J. Sound Vib.
,
350
, pp.
140
170
.
5.
Ji
,
J. C.
,
2014
, “
Design of a Nonlinear Vibration Absorber Using Three-to-One Internal Resonances
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
236
246
.
6.
Song
,
Y.
,
Liu
,
Z. G.
,
Duan
,
F. C.
,
Lu
,
X. B.
, and
Wang
,
H. R.
,
2017
, “
Study on Wind-Induced Vibration Behavior of Railway Catenary in Spatial Stochastic Wind Field Based on Nonlinear Finite Element Procedure
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011010
.
7.
Cox
,
D. R.
, and
Miller
,
H. D.
,
1965
,
The Theory of Stochastic Processes
,
Chapman and Hall
,
New York
.
8.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
,
1997
, “
Exact Stationary Solutions of Averaged Equations of Stochastically and Harmonically Excited MDOF Quasi-Linear Systems With Internal and or External Resonances
,”
J. Sound Vib.
,
204
(
2
), pp.
249
258
.
9.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
,
2004
, “
Stochastic Averaging of Quasi-Integrable Hamiltonian Systems Under Combined Harmonic and White Noise Excitations
,”
Int. J. Non-Linear Mech.
,
39
(
9
), pp.
1421
1434
.
10.
Xu
,
W.
,
He
,
Q.
,
Rong
,
H. W.
, and
Fang
,
T.
,
2002
, “
One-to-Two Internal Resonance in Two-Degrees-of-Freedom Nonlinear System With Narrow-Band Excitations
,”
Nonlinear Dyn.
,
27
(
4
), pp.
385
395
.
11.
Ikeda
,
T.
, and
Ibrahim
,
R. A.
,
2005
, “
Nonlinear Random Responses of a Structure Parametrically Coupled With Liquid Sloshing in a Cylindrical Tank
,”
J. Sound Vib.
,
284
(
1–2
), pp.
75
102
.
12.
Sapsis
,
T. P.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Effect of Stochasticity on Targeted Energy Transfer From a Linear Medium to a Strongly Nonlinear Attachment
,”
Probab. Eng. Mech.
,
26
(
2
), pp.
119
133
.
13.
Chen
,
L. Q.
, and
Jiang
,
W. A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
14.
Jia
,
W. T.
, and
Zhu
,
W. Q.
,
2014
, “
Stochastic Averaging of Quasi-Integrable and Non-Resonant Hamiltonian Systems Under Combined Gaussian and Poisson White Noise Excitations
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1271
1289
.
15.
Jia
,
W. T.
, and
Zhu
,
W. Q.
,
2013
, “
Stochastic Averaging of Quasi-Integrable and Resonant Hamiltonian Systems Under Combined Gaussian and Poisson White Noise Excitations
,”
ASME J. Appl. Mech.
,
81
(4), p.
041009
.
16.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1988
, “
First-Passage Time Probability of Non-Linear Stochastic Systems by Generalized Cell Mapping Method
,”
J. Sound Vib.
,
124
(
2
), pp.
233
248
.
17.
Au
,
S. K.
, and
Beck
,
J. L.
,
2003
, “
Important Sampling in High Dimensions
,”
Struct. Saf.
,
25
(
2
), pp.
139
163
.
18.
Bucher
,
C.
,
2009
, “
Asymptotic Sampling for High-Dimensional Reliability Analysis
,”
Probab. Eng. Mech.
,
24
(
4
), pp.
504
510
.
19.
Sichani
,
M. T.
,
Nielsen
,
S. R. K.
, and
Bucher
,
C.
,
2011
, “
Efficient Estimation of First Passage Probability of High-Dimensional Nonlinear Systems
,”
Probab. Eng. Mech.
,
26
(
4
), pp.
539
549
.
20.
Naess
,
A.
, and
Moe
,
V.
,
2000
, “
Efficient Path Integration Methods for Nonlinear Dynamic Systems
,”
Probab. Eng. Mech.
,
15
(
2
), pp.
221
231
.
21.
Yang
,
J.
,
Faverjon
,
B.
,
Peters
,
H.
,
Marburg
,
S.
, and
Kessissoglou
,
N.
,
2017
, “
Deterministic and Stochastic Model Order Reduction for Vibration Analyses of Structures With Uncertainties
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021007
.
22.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1986
, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non-Linear Mech.
,
21
(
2
), pp.
111
134
.
23.
Zhu
,
W. Q.
,
1996
, “
Recent Developments and Applications of Stochastic Averaging Method in Random Vibration
,”
ASME Appl. Mech. Rev.
,
49
(
10S
), pp.
s72
s80
.
24.
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
ASME Appl. Mech. Rev.
,
59
(
4
), pp.
230
248
.
25.
Huang
,
Z. L.
,
Zhu
,
W. Q.
, and
Suzuki
,
Y.
,
2000
, “
Stochastic Averaging of Strongly Nonlinear Oscillators Under Combined Harmonic and White-Noise Excitations
,”
J. Sound Vib.
,
238
(
2
), pp.
233
256
.
26.
Huang
,
Z. L.
,
Zhu
,
W. Q.
,
Ni
,
Y. Q.
, and
Ko
,
J. M.
,
2003
, “
Stochastic Averaging of Strongly Non-Linear Oscillators Under Bounded Noise Excitation
,”
J. Sound Vib.
,
254
(
2
), pp.
245
267
.
27.
Wu
,
Y. J.
, and
Zhu
,
W. Q.
,
2008
, “
Stochastic Averaging of Strongly Nonlinear Oscillators Under Combined Harmonic and Wide-Band Noise Excitations
,”
ASME J. Vib. Acoust.
,
130
(
5
), p.
051004
.
28.
Chen
,
L. C.
, and
Zhu
,
W. Q.
,
2009
, “
The First Passage Failure of SDOF Strongly Nonlinear Stochastic System With Fractional Derivative Damping
,”
J. Vib. Control
,
15
(
8
), pp.
1247
1266
.
29.
Deng
,
M. L.
, and
Zhu
,
W. Q.
,
2007
, “
Stochastic Averaging of MDOF Quasi-Integrable Hamiltonian Systems Under Wide-Band Random Excitation
,”
J. Sound Vib.
,
305
(
4–5
), pp.
783
794
.
30.
Wu
,
Y. J.
,
Luo
,
M.
, and
Zhu
,
W. Q.
,
2008
, “
First-Passage Failure of Strongly Nonlinear Oscillators Under Combined Harmonic and Real Noise Excitations
,”
Arch. Appl. Mech.
,
78
(
7
), pp.
501
515
.
31.
Wu
,
Y. J.
,
Gao
,
Y. Y.
, and
Zhang
,
L.
,
2013
, “
First-Passage Problem of Strongly Nonlinear Stochastic Oscillators With External and Internal Resonances
,”
Eur. J. Mech.-A/Solids
,
39
, pp.
60
68
.
32.
Wang
,
H. Y.
, and
Wu
,
Y. J.
,
2016
, “
First-Passage Problem of a Class of Internally Resonant Quasi-Integrable Hamiltonian System Under Wide-Band Stochastic Excitations
,”
Int. J. Non-Linear Mech.
,
85
, pp.
143
151
.
33.
Zhu
,
H. T.
, and
Guo
,
S. S.
,
2015
, “
Periodic Response of a Duffing Oscillator Under Combined Harmonic and Random Excitations
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041015
.
34.
Cveticanin
,
L.
,
2015
, “
A Solution Procedure Based on the Ateb Function for a Two-Degree-of-Freedom Oscillator
,”
J. Sound Vib.
,
346
, pp.
298
213
.
35.
Cheung
,
Y. K.
, and
Xu
,
Z.
,
1995
, “
Internal Resonance of Strongly Non-Linear Autonomous Vibrating Systems With Many Degrees of Freedom
,”
J. Sound Vib.
,
180
(
2
), pp.
229
238
.
You do not currently have access to this content.