The building structural vibration control by an active mass damper (AMD) with delayed acceleration feedback is studied. The control is designed with a multi-objective optimal approach. The stable region in a parameter space of the control gain and time delay is obtained by using the method of stability switch and the numerical code of NDDEBIFTOOL. The control objectives include the setting time, total power consumption, peak time, and the maximum power. The multi-objective optimization problem (MOP) for the control design is solved with the simple cell mapping (SCM) method. The Pareto set and Pareto front are found to consist of two clusters. The first cluster has negative feedback gains, i.e., the positive acceleration feedback. We have shown that a proper time delay can enhance the vibration suppression with controls from the first cluster. The second cluster has positive feedback gains and is located in the region which is sensitive to time delay. A small time delay will deteriorate the control performance in this cluster. Numerical simulations and experiments are carried out to demonstrate the analytical findings.

References

References
1.
Masound
,
Z. N.
,
Nayfeh
,
A. H.
, and
Al-Mousa
,
A.
,
2003
, “
Delayed Position-Feedback Controller for the Reduction of Payload Pendulations of Rotary Cranes
,”
J. Sound Vib.
,
9
(
1–2
), pp.
257
277
.
2.
Nishimura
,
I.
,
Yamada
,
K.
,
Sakamoto
,
M.
, and
Kobori
,
T.
,
1997
, “
Control Performance of Active-Passive Composite Tuned Mass Damper
,”
Smart Mater. Struct.
,
7
(5), pp.
637
653
.
3.
Thenozhi
,
S.
, and
Yu
,
W.
,
2013
, “
Advances in Modeling and Vibration Control of Building Structures
,”
Annu. Rev. Control
,
37
(
2
), pp.
346
364
.
4.
Fisco
,
N. R.
, and
Adeli
,
H.
,
2011
, “
Smart Structures—Part II: Hybrid Control Systems and Control Strategies
,”
Sci. Iran.
,
18
(
3
), pp.
285
295
.
5.
Wang
,
Z. H.
, and
Zheng
,
Y. G.
,
2009
, “
The Optimal Form of the Fractional-Order Difference Feedbacks in Enhancing the Stability of a Sdof Vibration System
,”
J. Sound Vib.
,
326
(
3–5
), pp.
476
488
.
6.
He
,
Y. Q.
, and
Han
,
J. D.
,
2010
, “
Acceleration-Feedback-Enhanced Robust Control of an Unmanned Helicopter
,”
J. Guid. Control Dyn.
,
33
(
4
), pp.
1236
1250
.
7.
Sim
,
E.
, and
Lee
,
S. W.
,
1993
, “
Active Vibration Control of Flexible Structures With Acceleration Feedback
,”
J. Guid. Control Dyn.
,
16
(
2
), pp.
413
415
.
8.
Mahmoodi
,
S. N.
, and
Ahmadian
,
M.
,
2010
, “
Modified Acceleration Feedback for Active Vibration Control of Aerospace Structures
,”
Smart Mater. Struct.
,
19
(
6
), pp.
1
10
.
9.
Adhikari
,
R.
,
Yamaguchi
,
H.
, and
Yamazaki
,
T.
,
1998
, “
Modal Space Sliding-Mode Control of Structures
,”
Earthquake Eng. Struct. Dyn.
,
27
(
11
), pp.
1303
1314
.
10.
Alvarez
,
P.
,
McElwain
,
B.
,
Thesing
,
L.
,
Edalath
,
S.
,
Kukreti
,
A.
, and
Cohen
,
K.
,
2014
, “
PD and Fuzzy Logic Control for Earthquake Resilient Structures
,”
Comput. Appl. Eng. Educ.
,
22
(
1
), pp.
142
152
.
11.
Ali
,
S. F.
, and
Ramaswamy
,
A.
,
2009
, “
Optimal Fuzzy Logic Control for Mdof Structural Systems Using Evolutionary Algorithms
,”
Eng. Appl. Artif. Intell.
,
22
(
3
), pp.
407
419
.
12.
Tu
,
J.
,
Lin
,
X.
,
Tu
,
B.
,
Xu
,
J.
, and
Tan
,
D.
,
2014
, “
Simulation and Experimental Tests on Active Mass Damper Control System Based on Model Reference Adaptive Control Algorithm
,”
J. Sound Vib.
,
333
(
20
), pp.
4826
4842
.
13.
Yang
,
J. N.
,
Li
,
Z.
, and
Liu
,
S. C.
,
1992
, “
Control of Hysteretic System Using Velocity and Acceleration Feedback
,”
J. Eng. Mech.
,
118
(
11
), pp.
2227
2245
.
14.
Dyke
,
S. J.
,
1996
, “
Acceleration Feedback Control Strategies for Active and Semi-Active Control Systems: Modeling, Algorithm Development, and Experimental Verification
,”
Ph.D. thesis
, University of Notre Dame, Notre Dame, IN.
15.
Dyke
,
S. J.
,
Spencer
,
B. F.
,
Quast
,
P.
,
Kaspari
,
D. C.
, and
Sain
,
M. K.
,
1996
, “
Implementation of an Active Mass Driver Using Acceleration Feedback Control
,”
Comput.-Aided Civ. Infrastructure Eng.
,
11
(
5
), pp.
305
323
.
16.
Christenson
,
R. E.
,
Spencer
,
B. F.
, Jr.
,
Hori
,
N.
, and
Seto
,
K.
,
2003
, “
Coupled Building Control Using Acceleration Feedback
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
18
(
1
), pp.
4
18
.
17.
Sipahi
,
R.
, and
Olgac
,
N.
,
2003
, “
Active Vibration Suppression With Time Delayed Feedback
,”
ASME J. Vib. Acoust.
,
125
(
3
), pp.
384
388
.
18.
Chen
,
L.-X.
,
Cai
,
G.-P.
, and
Pan
,
J.
,
2009
, “
Experimental Study of Delayed Feedback Control for a Flexible Plate
,”
J. Sound Vib.
,
322
(
4–5
), pp.
629
651
.
19.
Xu
,
J.
, and
Chung
,
K.
,
2009
, “
Dynamics for a Class of Nonlinear Systems With Time Delay
,”
Chaos Solitons Fractals
,
40
(
1
), pp.
28
49
.
20.
Qin
,
Y.
,
Zhao
,
F.
,
Wang
,
Z.
,
Gu
,
L.
, and
Dong
,
M.
,
2017
, “
Comprehensive Analysis for Influence of Controllable Damper Time Delay on Semi-Active Suspension Control Strategies
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031006
.
21.
Hu
,
H. Y.
,
2004
, “
Using Delayed State Feedback to Stabilize Periodic Motions of an Oscillator
,”
J. Sound Vib.
,
275
(
3–5
), pp.
1009
1025
.
22.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
,
170
(
6
), pp.
421
428
.
23.
Wang
,
Z. H.
, and
Hu
,
H. Y.
,
2006
, “
Stabilization of Vibration Systems Via Delayed State Difference Feedback
,”
J. Sound Vib.
,
296
(
1–2
), pp.
117
129
.
24.
Xu
,
Q.
, and
Wang
,
Z. H.
,
2014
, “
Exact Stability Test of Neutral Delay Differential Equations Via a Rough Estimation of the Testing Integral
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
154
163
.
25.
Zhang
,
L.
, and
Stepan
,
G.
,
2016
, “
Exact Stability Chart of an Elastic Beam Subjected to Delayed Feedback
,”
J. Sound Vib.
,
367
, pp.
219
232
.
26.
Masoud
,
Z. N.
, and
Nayfeh
,
A. H.
,
2003
, “
Sway Reduction on Container Cranes Using Delayed Feedback Controller
,”
Nonlinear Dyn.
,
34
(
3–4
), pp.
347
358
.
27.
Zhang
,
L.
,
Wang
,
H.
, and
Hu
,
H.
,
2012
, “
Symbolic Computation of Normal Form for Hopf Bifurcation in a Neutral Delay Differential Equation and an Application to a Controlled Crane
,”
Nonlinear Dyn.
,
70
(
1
), pp.
463
473
.
28.
Insperger
,
T.
,
Milton
,
J.
, and
Stepan
,
G.
,
2013
, “
Acceleration Feedback Improves Balancing Against Reflex Delay
,”
J. R. Soc. Interface
,
10
(
79
), p.
20120763
.
29.
Xu
,
Q.
,
Stepan
,
G.
, and
Wang
,
Z. H.
,
2017
, “
Balancing a Wheeled Inverted Pendulum With a Single Accelerometer in the Presence of Time Delay
,”
J. Vib. Control
,
23
(
4
), pp.
604
614
.
30.
Wang
,
Z. H.
,
Hu
,
H. Y.
,
Xu
,
Q.
, and
Stepan
,
G.
,
2017
, “
Effect of Delay Combinations on Stability and Hopf Bifurcation of an Oscillator With Acceleration-Derivative Feedback
,”
Int. J. Non-Linear Mech.
,
94
, pp.
392
399
.
31.
Hernández
,
C.
,
Naranjani
,
Y.
,
Sardahi
,
Y.
,
Liang
,
W.
,
Schütze
,
O.
, and
Sun
,
J.-Q.
,
2013
, “
Simple Cell Mapping Method for Multi-Objective Optimal Feedback Control Design
,”
Int. J. Dyn. Control
,
1
(
3
), pp.
231
238
.
32.
Xiong
,
F.-R.
,
Qin
,
Z.-C.
,
Xue
,
Y.
,
Schütze
,
O.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2014
, “
Multi-Objective Optimal Design of Feedback Controls for Dynamical Systems With Hybrid Simple Cell Mapping Algorithm
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
5
), pp.
1465
1473
.
33.
Mitchell
,
M.
,
1996
,
An Introduction to Genetic Algorithms
,
MIT Press
,
Cambridge, MA
.
34.
Schmitt
,
L. M.
,
2001
, “
Theory of Genetic Algorithms
,”
Theor. Comput. Sci.
,
259
(
1–2
), pp.
1
61
.
35.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,” IEEE International Conference on Neural Networks (
ICNN
), Perth, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.
36.
Trelea
,
I. C.
,
2003
, “
The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection
,”
Inf. Process. Lett.
,
85
(
6
), pp.
317
325
.
37.
Coello
,
C. A. C.
,
Lamont
,
G. B.
, and
Veldhuizen
,
D. A. V.
,
2007
,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Springer
,
New York
.
38.
Hsu
,
C. S.
,
1987
,
Cell-to-Cell Mapping-a Method of Global Analysis for Nonlinear System
,
Springer-Verlag
,
New York
.
39.
Chen
,
L.-X.
, and
Sun
,
J.-Q.
,
2014
, “
Multi-Objective Optimal Design and Experimental Validation of Tracking Control of a Rotating Flexible Beam
,”
J. Sound Vib.
,
333
(
19
), pp.
4415
4426
.
40.
Huan
,
R.-H.
,
Chen
,
L.-X.
, and
Sun
,
J.-Q.
,
2015
, “
Multi-Objective Optimal Design of Active Vibration Absorber With Delayed Feedback
,”
J. Sound Vib.
,
339
, pp.
56
64
.
41.
Naranjani
,
Y.
,
Sardahi
,
Y.
, and
Sun
,
J. Q.
,
2014
, “
A Genetic Algorithm and Cell Mapping Hybrid Method for Multi-Objective Optimization Problems
,”
11th International Conference on Electrical Engineering, Computing Science and Automatic Control
(
CCE
), Campeche, Mexico, Sept. 29–Oct. 3, pp.
1
5
.
42.
Freedman
,
H. I.
, and
Kuang
,
Y.
,
1991
, “
Stability Switches in Linear Scalar Neutral Delay Equations
,”
Funkcialaj Ekvacioj
,
34
, pp.
187
209
.
43.
Pareto
,
V.
,
1971
,
Manual of Political Economy (Translated by Ann S. Schwier)
,
The MacMillan Press
,
London
.
44.
Das
,
I.
,
1999
, “
On Characterizing the ‘Knee' of the Pareto Curve Based on Normal-Boundary Intersection
,”
Struct. Optim.
,
18
(
2–3
), pp.
107
115
.
45.
Gu
,
X.
,
Sun
,
G.
,
Li
,
G.
,
Mao
,
L.
, and
Li
,
Q.
,
2013
, “
A Comparative Study on Multiobjective Reliable and Robust Optimization for Crashworthiness Design of Vehicle Structure
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
669
684
.
46.
Budai
,
C.
,
Kovacs
,
L. L.
,
Kovecses
,
J.
, and
Stepan
,
G.
,
2017
, “
Effect of Dry Friction on Vibration of Sampled-Data Mechatronic Systems
,”
Nonlinear Dyn.
,
88
(
1
), pp.
349
361
.
47.
Stepan
,
G.
,
Milton
,
J. G.
, and
Insperger
,
T.
,
2017
, “
Quantization Improves Stabilization of Dynamical Systems With Delayed Feedback
,”
Chaos
,
27
(
11
), p.
114306
.
You do not currently have access to this content.