We revisit Mindlin's theory for flexural dynamics of plates using two correction factors, one for shear and one for rotary inertia. Mindlin himself derived and considered his equations with both correction factors, but never with the two simultaneously. Here, we derive optimal values of both factors by matching the Mindlin frequency–wavenumber branches with the exact Rayleigh–Lamb dispersion relations. The thickness shear resonance frequency is obtained if the factors are proportional but otherwise arbitrary. This degree-of-freedom allows matching of the main flexural mode dispersion with the exact Lamb wave at either low or high frequency by choosing the shear correction factor as a function of Poisson's ratio. At high frequency, the shear factor takes the value found by Mindlin, while at low frequency, it assumes a new explicit form, which is recommended for flexural wave modeling.

References

References
1.
Uflyand
,
Y. S.
,
1948
, “
The Propagation of Waves in the Transverse Vibrations of Bars and Plates
,”
Prikl. Mat. Mekh.
,
12
, pp.
287
300
.
2.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
18
(
1
), pp.
31
38
.
3.
Mindlin
,
R. D.
,
1961
, “
High Frequency Vibrations of Crystal Plates
,”
Q. Appl. Math.
,
19
, pp.
51
61
.
4.
Mindlin
,
R. D.
, and
Yang
,
J.
,
2006
,
An Introduction to the Mathematical Theory of Vibrations of Elastic Plates
,
World Scientific
,
Singapore
.
5.
Norris
,
A. N.
,
Krylov
,
V. V.
, and
Abrahams
,
I. D.
,
2000
, “
Flexural Edge Waves and Comments on ‘A New Bending Wave Solution for the Classical Plate Equation’ [J. Acoust. Soc. Am. 104, 2220–2222 (1998)]
,”
J. Acoust. Soc. Am.
,
107
(
3
), pp.
1781
1784
.
6.
Vemula
,
C.
, and
Norris
,
A. N.
,
1997
, “
Flexural Wave Propagation and Scattering on Thin Plates Using Mindlin Theory
,”
Wave Motion
,
26
(
1
), pp.
1
12
.
7.
Hutchinson
,
J. R.
,
1984
, “
Vibrations of Thick Free Circular Plates, Exact Versus Approximate Solutions
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
581
585
.
8.
Stephen
,
N.
,
1997
, “
Mindlin Plate Theory: Best Shear Coefficient and Higher Spectra Validity
,”
J. Sound Vib.
,
202
(
4
), pp.
539
553
.
9.
Hull
,
A. J.
,
2006
, “
Mindlin Shear Coefficient Determination Using Model Comparison
,”
J. Sound Vib.
,
294
(
1–2
), pp.
125
130
.
10.
Lakawicz
,
J. M.
, and
Bottega
,
W. J.
,
2017
, “
Branch Dependent Shear Coefficients and Their Influence on the Free Vibration of Mindlin Plates
,”
J. Sound Vib.
,
389
, pp.
202
223
.
11.
Benscoter
,
S. U.
,
1955
, ‘
Review of ‘Timoshenko's Shear Coefficient for Flexural Vibrations of Beams,’ by R.D. Mindlin and H. Deresiewicz
,”
ASME Appl. Mech. Rev.
,
8
, pp.
510
511
.
12.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1955
, “
Timoshenko's Shear Coefficient for Flexural Vibrations of Beams
,”
Second U.S. National Congress on Applied Mechanics
, Ann Arbor, MI, June 14–18, pp.
175
178
.
13.
Bresse
,
M.
,
1859
,
Cours De Mécanique Appliquée
,
Mallet-Bachelier
,
Paris, France
.
14.
Graff
,
K. F.
,
1991
,
Wave Motion in Elastic Solids
,
Dover
,
Mineola, NY
.
15.
Shames
,
I. H.
, and
Dym
,
C. L.
,
1985
,
Energy and Finite Element Methods in Structural Mechanics
,
Taylor and Francis
,
Boca Raton, FL
.
16.
Norris
,
A. N.
,
2003
, “
Flexural Waves on Narrow Plates
,”
J. Acoust. Soc. Am.
,
113
(
5
), pp.
2647
2658
.
17.
Rayleigh
,
L.
,
1885
, “
On Waves Propagated Along the Plane Surface of an Elastic Solid
,”
Proc. London Math. Soc.
,
s1–17
(
1
), pp.
4
11
.
You do not currently have access to this content.