In this work, we investigate numerically the propagation of Lamb waves in a film bulk acoustic resonator (FBAR) structure formed by piezoelectric ZnO layer sandwiched between two Mo electrodes coupled with Bragg reflectors; the system is thus considered as a phononic-crystal (PnC) plate. The aim is to suppress the first-order symmetric Lamb wave mode considered as a spurious mode caused by the establishment of a lateral standing wave due to the reflection at the embedded lateral extremities of the structure; this spurious mode is superposing to the main longitudinal mode resonance of the FBAR. The finite element study, using harmonic and eigen-frequency analyses, is performed on the section of FBAR structure coupled with the PnC. In the presence of PnC, the simulation results show the evidence of a selective band gap where the parasitic mode is prohibited. The quality factor of the FBAR is enhanced by the introduction of the PnC. Indeed, the resonance and antiresonance frequencies passed from 1000 and 980 (without PnC) to 2350 and 1230 (with PnC), respectively. This is accompanied by a decrease in the electromechanical coupling coefficient from 10.60% to 6.61%.

References

References
1.
Izza
,
N.
,
Nor
,
M.
,
Shah
,
K.
,
Singh
,
J.
, and
Sauli
,
Z.
,
2013
, “
Design and Simulation of Film Bulk Acoustic Wave Resonator in Ku-Band
,”
Adv. Mat. Res.
,
662
, pp.
556
561
.
2.
Park
,
J. Y.
,
Lee
,
H. M.
,
Lee
,
H. C.
,
Lee
,
K. H.
,
Ko
,
Y. J.
,
Shin
,
J. H.
,
Moon
,
S. H.
, and
Bu
,
J. U.
,
2003
, “
Micromachined FBAR RF Filters for Advanced Handset Applications
,”
IEEE MTT-S International Microwave Symposium Digest
, Boston, MA, June 8–12, pp.
911
914
.
3.
Lakin
,
K. M.
,
Belsick
,
J.
,
McDonald
,
J. F.
, and
McCarron
,
K. T.
,
2001
, “
Improved Bulk Wave Resonator Coupling Coefficient for Wide Bandwidth Filters
,” IEEE Ultrasonics Symposium (
ULTSYM
), Atlanta, GA, Oct. 7–10, pp.
827
831
.
4.
Qiu
,
X.
,
Tang
,
R.
,
Zhu
,
J.
,
Oiler
,
J.
,
Yu
,
C.
,
Wang
,
Z.
, and
Yu
,
H.
,
2011
, “
The Effects of Temperature, Relative Humidity and Reducing Gases on the Ultraviolet Response of ZnO Based Film Bulk Acoustic-Wave Resonator
,”
Sensor Actuator B
,
151
(
2
), pp.
360
364
.
5.
Flewitt
,
A. J.
,
Luo
,
J. K.
,
Fu
,
Y. Q.
,
Garcia-Gancedo
,
L.
,
Du
,
X. Y.
,
Lu
,
J. R.
,
Zhao
,
X. B.
,
Iborra
,
E.
,
Ramos
,
M.
, and
Milne
,
W. I.
,
2015
, “
ZnO Based SAW and FBAR Devices for Bio-Sensing Applications
,”
J. Non-Newton. Fluid
,
222
, pp.
209
216
.
6.
Gill
,
G. S.
, and
Prasad
,
M.
,
2016
, “
Development of Film Bulk Acoustic Wave Resonator: A Review
,”
Sensor Lett.
,
14
(
4
), pp.
346
361
.
7.
Hara
,
M.
, and
Kuwano
,
H.
,
2014
, “
Q-Enhancement With Electrode Materials in the FBAR for Timing Devices
,” IEEE International Ultrasonics Symposium (
ULTSYM
), Chicago, IL, Sept. 3–6, pp.
2023
2026
.
8.
Tay
,
K.-W.
,
Huang
,
C.-L.
, and
Wu
,
L.
,
2004
, “
Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics
,”
Jpn. J. Appl. Phys
,
43
(
3
), pp.
1122
1126
.
9.
Lee
,
E.
,
Mai
,
L.
, and
Yoon
,
G.
,
2011
, “
Development of High-Quality FBAR Devices for Wireless Applications Employing Two-Step Annealing Treatments
,”
IEEE Microwave Compon. Lett.
,
21
(
11
), pp.
604
606
.
10.
Ruby
,
R.
,
Larson
,
J.
,
Feng
,
C.
, and
Fazzio
,
S.
,
2005
, “
The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance
,”
IEEE MTT-S International Microwave Symposium Digest
, Long Beach, CA, June 17, pp.
217
220
.
11.
Makkonen
,
T.
,
Holappa
,
A.
,
Ellä
,
J.
, and
Salomea
,
M. M.
,
2001
, “
Finite Element Simulations of Thin-Film Composite BAW Resonators
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Control
,
48
(
5
), pp.
1241
1258
.
12.
Royer
,
D.
, and
Dieulesaint
,
E.
,
2000
,
Elastic Waves in Solid II: Generation, Acousto-Optic Interaction, Applications
,
Springer-Verlag
,
Berlin
, pp.
5
40
.
13.
Serhane
,
R.
,
Boutkedjirt
,
T.
, and
Hassein-Bey
,
A.
,
2012
, “
Electromechanical Response Simulation of Film Bulk Acoustic Wave Resonator
,” 24th International Conference on Microelectronics (
ICM
), Algiers, Algeria, Dec. 16–20, pp.
1
4
.
14.
Lakin
,
K. M.
,
Kline
,
G. R.
, and
McCarron
,
K. T.
,
1993
, “
High-Q Microwave Acoustic Resonators and Filters
,”
IEEE Trans. Microwave Theory Tech.
,
41
(
12
), pp.
2139
2146
.
15.
Giraud
,
S.
,
Bila
,
S.
,
Aubourg
,
M.
, and
Cros
,
D.
,
2007
, “
Bulk Acoustic Wave Resonators 3D Simulation
,” IEEE International Frequency Control Symposium Joint With the 21st European Frequency and Time Forum (
FREQ
), Geneva, Switzerland, May 29–June 1, pp.
1147
1153
.
16.
Link
,
A.
,
Schmidhammer
,
E.
,
Heinze
,
H.
,
Mayer
,
M.
,
Bader
,
B.
, and
Weigel
,
R.
,
2006
, “
Appropriate Methods to Suppress Spurious FBAR Modes in Volume Production
,” IEEE MTT-S International Microwave Symposium Digest (
MWSYM
), San Francisco, CA, June 11–16, pp.
394
397
.
17.
Larson
,
J. D.
, III
,
Ruby
,
R. C.
, and.
Bradley
,
P.
,
2001
, “
Bulk Acoustic Wave Resonator With Improved Lateral Mode Suppression
,” Agilent Technologies, Inc., Santa Clara, CA, U.S. Patent No.
6215375 B1
.
18.
Yang
,
D. Y.
, and
Kim
,
H. W.
,
2004
, “
Film Bulk Acoustic Resonator With Improved Lateral Mode Suppression
,” Samsung Electro-Mechanics Co., Ltd., Suwon, South Korea, U.S. Patent No.
6693500 B2
.
19.
Kaitila
,
J.
,
Ylilammi
,
M.
, and
Ellä
,
J.
,
2004
, “
Resonator Structure and a Filter Comprising Such a Resonator Structure
,” Nokia Corporation, Espoo, Finland, U.S. Patent No.
6812619 B1
.
20.
Thalhammer
,
R.
,
Kaitila
,
J.
,
Zieglmeier
,
S.
, and
Elbrecht
,
L.
,
2006
, “
4E-3 Spurious Mode Suppression in BAW Resonators
,” IEEE Ultrasonics Symposium (
ULTSYM
), Vancouver, BC, Canada, Oct. 2–6, pp.
456
459
.
21.
Fattinger
,
G. C.
,
Marksteiner
,
S.
,
Kaitila
,
J.
, and
Aigner
,
R.
,
2005
, “
Optimization of Acoustic Dispersion for High Performance Thin Film BAW Resonators
,” IEEE Ultrasonics Symposium (
ULTSYM
), Rotterdam, The Netherlands, Sept. 18–21, pp.
1175
1178
.
22.
Rottenberg
,
X.
,
Jansen
,
R.
, and
Tilmans
,
H. C.
,
2012
, “
Phononic BandGap Coupled Bulk Acoustic Wave Resonators
,”
IEEE 25th International Conference on Micro Electro Mechanical Systems
(
MEMS
), Paris, France, Jan. 29–Feb. 2, pp.
725
728
.
23.
Khelif
,
A.
, and
Adibi
,
A.
,
2016
,
Phononic Crystals: Fundamentals and Applications
,
Springer
,
New York
, p.
244
.
24.
Liu
,
J.
,
Omori
,
T.
,
Ahn
,
C.
, and
Hashimoto
,
K.
,
J.
,
2013
, “
Impact of Surface Periodic Grating on Film Bulk Acoustic Resonator Structures to Spurious Transverse Resonances
,”
J. Appl. Phys.
,
113
(
14
), p.
144507
.
25.
Koshiba
,
M.
,
Karakida
,
S.
, and
Suzuki
,
M.
,
1984
, “
Finite-Element Analysis of Lamb Wave Scattering in an Elastic Plate Waveguide
,”
IEEE Trans. Sonics Ultrason.
,
31
(
1
), pp.
18
24
.
26.
Brand
,
O.
,
Dufour
,
I.
,
Heinrich
,
S. M.
, and
Josse
,
F.
,
2015
,
Resonant MEMS Fundamentals, Implementation and Application
,
Wiley-VCH Verlag
,
Weinheim, Germany
.
27.
Duffy Jr.
,
W.
,
1992
, “
Acoustic Quality Factor of Molybdenum and Tungsten at Low Temperatures
,”
J. Appl. Phys.
,
72
(
12
), pp.
5628
5634
.
28.
Zhang
,
L.
,
Ma
,
A.
,
Liu
,
C.
,
Qu
,
W.
,
Peng
,
J.
,
Luo
,
Y.
, and
Zuo
,
Y.
,
2014
, “
Dielectric Properties and Temperature Increase Characteristics of Zinc Oxide Dust From Fuming Furnace
,”
Trans. Nonferrous Met. Soc. China
,
24
(
12
), pp.
4004
4011
.
29.
Thalmayr
,
F.
,
Hashimoto
,
K.
,
Omori
,
T.
, and
Yamaguchi
,
M.
,
2010
, “
Frequency Domain Analysis of Lamb Wave Scattering and Application to Film Bulk Acoustic Wave Resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
57
(
7
), pp.
1641
1648
.
30.
Hastings
,
F.
,
Schneider
,
J. B.
, and
Broschat
,
S. L.
,
1996
, “
Application of the Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic Wave Propagation
,”
J. Acoust. Soc. Am.
,
100
(
5
), pp.
3061
3069
.
31.
ANSI/IEEE,
1996
, “
Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 ‘ANSI/IEEE Standard on Piezoelectricity’
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
43
(
5
), p.
717
.
32.
Tirado
,
J. V.
,
2010
, “
Bulk Acoustic Wave Resonators and Their Applications to Microwave Devices
,”
Ph.D. thesis
, Universitat Autònoma de Barcelona, Barcelona, Spain.
33.
Thalmayr
,
F.
,
Hashimoto
,
K.
,
Omori
,
T.
, and
Yamaguchi
,
M.
,
2010
, “
Quantitative Analysis of Power Leakage in an Film Bulk Acoustic Resonator Device at the Antiresonance Frequency
,”
Jpn. J. Appl. Phys.
,
49
(
7S
), p.
07HD11
.
34.
Pensala
,
T.
,
2011
, “
Thin Film Bulk Acoustic Wave Devices. Performance Optimization and Modeling
,”
Ph.D. thesis
, Aalto University, Espoo, Finland.
35.
Wu
,
T. T.
,
Wu
,
T. C.
, and
Hsu
,
J. C.
,
2009
,
Photonic and Phononic Crystal Materials and Devices IX
, Society of Photo Optical, Bellingham, WA, pp.
72230G
72230G12
.
36.
COMSOL
,
2012
, “
MEMS Module User's Guide, Version 4.3a, Part No. CM020801
,” COMSOL, Inc., Burlington, MA, accessed Jan. 17, 2018, https://cdn.comsol.com/doc/4.3/COMSOL_ReleaseNotes.pdf
37.
Campanella
,
H.
,
2010
,
Acoustic Wave and Electromechanical Resonators Concept to Key Applications
,
Artech House
,
Norwood, MA
.
You do not currently have access to this content.