Machining process dynamics can be described by state-space delayed differential equations (DDEs). To numerically predict the process stability, diverse piecewise polynomial interpolation is often utilized to discretize the continuous DDEs into a set of linear discrete equations. The accuracy of discrete approximation of the DDEs generally depends on how to deal with the piecewise polynomials. However, the improvement of the stability prediction accuracy cannot be always guaranteed by higher-order polynomials due to the Runge phenomenon. In this study, the piecewise polynomials with derivative-continuous at joint nodes are taken into consideration. We develop a recursive estimation of derived nodes for interpolation approximation of the state variables, so as to improve the discretization accuracy of the DDEs. Two different temporal discretization methods, i.e., second-order full-discretization and state-space temporal finite methods, are taken as demonstrations to illustrate the effectiveness of applying the proposed approach for accuracy improvement. Numerical simulations prove that the proposed approach brings a great improvement on the accuracy of the stability lobes, as well as the rate of convergence, compared to the previous recorded ones with the same order of interpolation polynomials.

References

References
1.
Ismail
,
F.
, and
Soliman
,
E.
,
1997
, “
A New Method for the Identification of Stability Lobes in Machining
,”
Int. J. Mach. Tools Manuf.
,
37
(
6
), pp.
763
774
.
2.
Solis
,
E.
,
Peres
,
C.
,
Jimenez
,
J.
,
Alique
,
J.
, and
Monje
,
J.
,
2004
, “
A New Analytical–Experimental Method for the Identification of Stability Lobes in High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
44
(
15
), pp.
1591
1597
.
3.
Quintana
,
G.
,
Ciurana
,
J.
,
Ferrer
,
I.
, and
Rodríguez
,
C.
,
2009
, “
Sound Mapping for Identification of Stability Lobe Diagrams in Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
3
), pp.
203
211
.
4.
Smith
,
S.
, and
Tlusty
,
J.
,
1993
, “
Efficient Simulation Programs for Chatter in Milling
,”
CIRP Ann.-Manuf. Technol.
,
42
(
1
), pp.
463
466
.
5.
Minis
,
I.
, and
Yanushevsky
,
B.
,
1993
, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
ASME J. Eng. Ind.
,
115
(
1
), pp. 1–8.
6.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.-Manuf. Technol.
,
44
(
1
), pp.
357
362
.
7.
Merdol
,
S.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(3), pp.
459
466
.
8.
Hajdu
,
D.
,
Insperger
,
T.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2017
, “
Prediction of Robust Stability Boundaries for Milling Operations With Extended Multi-Frequency Solution and Structured Singular Values
,”
J. Manuf. Processes
,
30
, pp.
281
289
.
9.
Dutterer
,
B.
, and
Burns
,
T.
,
2002
, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
124
(9), pp. 217–225.
10.
Bayly
,
P.
,
Halley
,
J.
,
Mann
,
B.
, and
Davies
,
M.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.
11.
Khasawneh
,
F.
,
Patel
,
B.
, and
Mann
,
B.
,
2009
, “
A State-Space Temporal Finite Element Approach for Stability Investigations of Delay Equations
,”
ASME
Paper No. SMASIS2009-1263.
12.
Khasawneh
,
F.
,
Bobrenkov
,
O.
,
Mann
,
B.
, and
Butcher
,
E.
,
2012
, “
Investigation of Period-Doubling Islands in Milling With Simultaneously Engaged Helical Flutes
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021008
.
13.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.
14.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
15.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
,
2008
, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
,
313
(
1
), pp.
334
341
.
16.
Lehotzky
,
D.
, and
Insperger
,
T.
,
2012
, “
Stability of Turning Processes Subjected to Digital PD Control
,”
Period. Polytech. Eng. Mech. Eng.
,
56
(
1
), pp.
33
42
.
17.
AsI
,
F.
, and
Ulsoy
,
A.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
2
), pp.
215
223
.
18.
Sun
,
Y.
,
Nelson
,
P.
, and
Ulsoy
,
A.
,
2007
, “
Delay Differential Equations Via the Matrix Lambert W Function and Bifurcation Analysis: Application to Machine Tool Chatter
,”
Math. Biosci. Eng.
,
4
(
2
), p.
355
.
19.
Li
,
M.
,
Zhang
,
G.
, and
Huang
,
Y.
,
2013
, “
Complete Discretization Scheme for Milling Stability Prediction
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
187
199
.
20.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2014
, “
Runge–Kutta Methods for a Semi-Analytical Prediction of Milling Stability
,”
Nonlinear Dyn.
,
76
(
1
), pp.
289
304
.
21.
Butcher
,
E.
,
Bobrenkov
,
O.
,
Bueler
,
E.
, and
Nindujarla
,
P.
,
2009
, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031003
.
22.
Engelborghs
,
K.
,
Luzyanina
,
T.
,
Hout
,
K.
, and
Roose
,
D.
,
2001
, “
Collocation Methods for the Computation of Periodic Solutions of Delay Differential Equations
,”
SIAM J. Sci. Comput.
,
22
(
5
), pp.
1593
1609
.
23.
Ding
,
Y.
,
Zhang
,
X.
, and
Ding
,
H.
,
2015
, “
A Legendre Polynomials Based Method for Stability Analysis of Milling Processes
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
024504
.
24.
Ding
,
Y.
,
Niu
,
J.
,
Zhu
,
L.
, and
Ding
,
H.
,
2016
, “
Numerical Integration Method for Stability Analysis of Milling With Variable Spindle Speeds
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011010
.
25.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
26.
Huang
,
T.
,
Zhang
,
X.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
An Efficient Linear Approximation of Acceleration Method for Milling Stability Prediction
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
56
64
.
27.
Khasawneh
,
F.
, and
Mann
,
B.
,
2011
, “
A Spectral Element Approach for the Stability of Delay Systems
,”
Int. J. Numer. Methods Eng.
,
87
(
6
), pp.
566
592
.
28.
Lehotzky
,
D.
,
Insperger
,
T.
,
Khasawneh
,
F.
, and
Stepan
,
G.
,
2017
, “
Spectral Element Method for Stability Analysis of Milling Processes With Discontinuous Time-Periodicity
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9
), pp.
2503
2514
.
29.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
Second-Order Full-Discretization Method for Milling Stability Prediction
,”
Int. J. Mach. Tools Manuf.
,
50
(
10
), pp.
926
932
.
30.
Quo
,
Q.
,
Sun
,
Y.
, and
Jiang
,
Y.
,
2012
, “
On the Accurate Calculation of Milling Stability Limits Using Third-Order Full-Discretization Method
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
61
66
.
31.
Ozoegwu
,
C.
,
Omenyi
,
S.
, and
Ofochebe
,
S.
,
2015
, “
Hyper-Third Order Full-Discretization Methods in Milling Stability Prediction
,”
Int. J. Mach. Tools Manuf.
,
92
, pp.
1
9
.
You do not currently have access to this content.