In order to broaden the sound absorption bandwidth of a perforated panel in the low frequency range, a lightweight membrane-type resonator is installed in the back cavity of the perforated panel to combine into a compound sound absorber (CSA). Because of the great flexibility, the membrane-type resonator can be vibrated easily by the incident sound waves passing through the holes of the perforated panel. In the low frequency range, the membrane-type resonator and the perforated panel constitute a two degrees-of-freedom (DOF)-resonant type sound absorption system, which generates two sound absorption peaks. By tuning the parameters of the membrane type resonator, a wide frequency band having a large sound absorption coefficient can be obtained. In this paper, the sound absorption coefficient of CSA is derived analytically by combining the vibration equation of the membrane-type resonator with the acoustic impedance equation of the perforated panel. The influences of the parameters of the membrane-type resonator on the sound absorption performance of the CSA are numerically analyzed. Finally, the wide band sound absorption capacity of the CSA is validated by the experimental test.

References

1.
Gourdon
,
E.
, and
Seppi
,
M.
,
2010
, “
On the Use of Porous Inclusions to Improve the Acoustical Response of Porous Materials: Analytical Model and Experimental Verification
,”
Appl. Acoust.
,
71
(
4
), pp.
283
298
.
2.
Park
,
S. H.
,
2013
, “
Acoustic Properties of Micro-Perforated Panel Absorbers Backed by Helmholtz Resonators for the Improvement of Low-Frequency Sound Absorption
,”
J. Sound Vib.
,
332
(
20
), pp.
4895
4911
.
3.
Klaus
,
J.
,
Bork
,
I.
,
Graf
,
M.
, and
Ostermeyer
,
G. P.
,
2014
, “
On the Adjustment of Helmholtz Resonators
,”
Appl. Acoust.
,
77
, pp.
37
41
.
4.
Gourdon
,
E.
, and
Savadkoohi
,
A. T.
,
2015
, “Nonlinear Structuring of Helmholtz Resonators for Increasing the Range of Sound Absorption,” EuroNoise, Maastricht, The Netherlands, May 31–June 3, pp.
973
976
.
5.
Maa
,
D. Y.
,
1975
, “
Theory and Design of Microperforated Panel Sound- Absorbing Constructions
,”
Sci. China Ser. A
,
18
(
1
), pp.
55
71
.
6.
Gai
,
X. L.
,
Xing
,
T.
,
Li
,
X. H.
,
Zhang
,
B.
, and
Wang
,
W. J.
,
2016
, “
Sound Absorption of Microperforated Panel Mounted With Helmholtz Resonators
,”
Appl. Acoust.
,
114
, pp.
260
265
.
7.
Sakagami
,
K.
,
Morimoto
,
M.
, and
Yairi
,
M.
,
2005
, “
A Note on the Effect of Vibration of a Microperforated Panel on Its Sound Absorption Characteristics
,”
Acoust. Sci. Technol.
,
26
(
2
), pp.
204
207
.
8.
Sakagami
,
K.
,
Morimoto
,
M.
, and
Yairi
,
M.
,
2009
, “
A Note on the Relationship Between the Sound Absorption by Microperforated Panels and Panel/Membrane-Type Absorbers
,”
Appl. Acoust.
,
70
(
8
), pp.
1131
1136
.
9.
Lee
,
Y. Y.
, and
Lee
,
E. W. M.
,
2007
, “
Widening the Sound Absorption Bandwidths of Flexible Micro-Perforated Curved Absorbers Using Structural and Acoustic Resonances
,”
Int. J. Mech. Sci.
,
49
(
8
), pp.
925
934
.
10.
Toyoda
,
M.
,
Mu
,
R. L.
, and
Takahashi
,
D.
,
2010
, “
Relationship Between Helmholtz-Resonance Absorption and Panel-Type Absorption in Finite Flexible Microperforated-Panel Absorbers
,”
Appl. Acoust.
,
71
(
4
), pp.
315
320
.
11.
Bravo
,
T.
,
Maury
,
C.
, and
Pinhède
,
C.
,
2012
, “
Sound Absorption and Transmission Through Flexible Micro-Perforated Panels Backed by an Air Layer and a Thin Plate
,”
J. Acoust. Soc. Am.
,
131
(
5
), pp.
3853
3863
.
12.
Abbad
,
A.
,
2016
, “Numerical Investigations on a Tunable Helmholtz Resonator: Integration of a Passive Polymer Membrane in a Helmholtz Resonator,”
SAE
Paper No. 2016-01-1842.
13.
Sanada
,
A.
, and
Tanaka
,
N.
,
2013
, “
Extension of the Frequency Range of Resonant Sound Absorbers Using Two-Degree-of-Freedom Helmholtz-Based Resonators With a Flexible Panel
,”
Appl. Acoust.
,
74
(
4
), pp.
509
516
.
14.
Nudehi
,
S. S.
,
Duncan
,
G. S.
, and
Farooq
,
U.
,
2013
, “
Modeling and Experimental Investigation of a Helmholtz Resonator With a Flexible Plate
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041102
.
15.
Maa
,
D. Y.
, and
Liu
,
K.
,
2000
, “
Sound Absorption Characteristics of Microperforated Absorber for Random Incidence
,”
Acta Acust.
,
25
(
4
), pp.
289
296
.
16.
Zhang
,
Z. M.
, and
Gu
,
X. T.
,
1998
, “
The Theoretical and Application Study on a Double Layer Microperforated Sound Absorption Structure
,”
J. Sound Vib.
,
215
(
3
), pp.
399
405
.
17.
Chen
,
W. H.
,
Lee
,
F. C.
, and
Chiang
,
D. M.
,
2000
, “
On the Acoustic Absorption of Porous Materials With Different Surface Shapes and Perforated Plates
,”
J. Sound Vib.
,
237
(
2
), pp.
337
355
.
18.
Sagakami
,
K.
,
Kobatake
,
S.
,
Kano
,
K.
,
Morimoto
,
M.
, and
Yari
,
M.
,
2011
, “
Sound Absorption Characteristics of a Single Microperforated Panel Absorber Backed by a Porous Absorbent Layer
,”
Acoust. Aust.
,
39
(
3
), pp.
95
100
.
19.
Wang
,
C. Q.
, and
Choy
,
Y. S.
,
2015
, “
Investigation of a Compound Perforated Panel Absorber With Backing Cavities Partially Filled With Polymer Materials
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
044501
.
20.
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P. O.
,
2006
, “
Experimental Evidence of Energy Pumping in Acoustics
,”
C. R. Mec.
,
334
(
11
), pp.
639
644
.
21.
Bellet
,
R.
,
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P. O.
,
2010
, “
Experimental Study of Targeted Energy Transfer From an Acoustic System to a Nonlinear Membrane Absorber
,”
J. Sound Vib.
,
329
(
14
), pp.
2768
2791
.
22.
Wu
,
X.
,
Shao
,
J.
, and
Cochelin
,
B.
,
2016
, “
Study of Targeted Energy Transfer Inside Three-Dimensional Acoustic Cavity by Two Nonlinear Membrane Absorbers and an Acoustic Mode
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031017
.
23.
Yang
,
M.
,
Ma
,
G.
,
Yang
,
Z.
, and
Sheng
,
P.
,
2013
, “
Coupled Membranes With Doubly Negative Mass Density and Bulk Modulus
,”
Phys. Rev. Lett.
,
110
(
13
), p.
134301
.
24.
Zhang
,
Y.
,
Wen
,
J.
,
Xiao
,
Y.
,
Wen
,
X.
, and
Wang
,
J.
,
2012
, “
Theoretical Investigation of the Sound Attenuation of Membrane-Type Acoustic Metamaterials
,”
Phys. Lett. A
,
376
(
17
), pp.
1489
1494
.
25.
Sakagami
,
K.
,
Fukutani
,
Y.
,
Yairi
,
M.
, and
Morimoto
,
M.
,
2014
, “
A Theoretical Study on the Effect of a Permeable Membrane in the Air Cavity of a Double-Leaf Microperforated Panel Space Sound Absorber
,”
Appl. Acoust.
,
79
, pp.
104
109
.
26.
Sakagami
,
K.
,
Nakamori
,
T.
,
Morimoto
,
M.
, and
Yairi
,
M.
,
2011
, “
Absorption Characteristics of a Space Absorber Using a Microperforated Panel and a Permeable Membrane
,”
Acoust. Sci. Technol.
,
32
(
1
), pp.
47
49
.
27.
Sakagami
,
K.
,
Fukutani
,
Y.
,
Yairi
,
M.
, and
Morimoto
,
M.
,
2014
, “
Sound Absorption Characteristics of a Double-Leaf Structure With an MPP and a Permeable Membrane
,”
Appl. Acoust.
,
76
, pp.
28
34
.
28.
Gai
,
X. L.
,
Li
,
X. H.
,
Zhang
,
B.
,
Xing
,
T.
,
Zhao
,
J. J.
, and
Ma
,
Z. H.
,
2016
, “
Experimental Study on Sound Absorption Performance of Microperforated Panel With Membrane Cell
,”
Appl. Acoust.
,
110
, pp.
241
247
.
29.
Hashimoto
,
H.
,
Katsura
,
M.
,
Yasuoka
,
M.
, and
Fujii
,
H.
,
1991
, “
Sound Insulation of a Rectangular Thin Membrane With Additional Weights
,”
Appl. Acoust.
,
33
(
1
), pp.
21
43
.
30.
Hashimoto
,
N.
,
Katsura
,
M.
, and
Nishikawa
,
Y.
,
1996
, “
Experimental Study on Sound Insulation of Membranes With Small Weights for Application to Membrane Structures
,”
Appl. Acoust.
,
48
(
1
), pp.
71
84
.
31.
Sakuma
,
T.
,
Iwase
,
T.
, and
Yasuoka
,
M.
,
1998
, “
Numerical Analysis of Sound Insulation Characteristics of Membranes With Additional Weights
,”
J. Archit. Plann.
,
63
(
510
), pp.
1
8
.
32.
Yang
,
M.
,
Ma
,
G.
,
Wu
,
Y.
,
Yang
,
Z.
, and
Sheng
,
P.
,
2014
, “
Homogenization Scheme for Acoustic Metamaterials
,”
Phys. Rev. B
,
89
(
6
), p.
064309
.
33.
Ma
,
G.
,
Yang
,
M.
,
Xiao
,
S.
,
Yang
,
Z.
, and
Sheng
,
P.
,
2014
, “
Acoustic Metasurface With Hybrid Resonances
,”
Nat. Mater.
,
13
(
9
), pp.
873
878
.
34.
Griffin
,
S.
,
Lane
,
S. A.
, and
Huybrechts
,
S.
,
2001
, “
Coupled Helmholtz Resonators for Acoustic Attenuation
,”
ASME J. Vib. Acoust.
,
123
(
1
), pp.
11
17
.
35.
Sullivan
,
J. W.
,
1979
, “
A Method for Modeling Perforated Tube Muffler Components—Part II: Applications
,”
J. Acoust. Soc. Am.
,
66
(
3
), pp.
779
787
.
You do not currently have access to this content.