A new light-activated shape memory polymer (LaSMP) smart material exhibits shape memory behaviors and stiffness variation via ultraviolet (UV) light exposures. This dynamic stiffness provides a new noncontact actuation mechanism for engineering structures. Isogeometric analysis (IGA) utilizes high order and high continuity nonuniform rational B-spline (NURBS) as basis functions which naturally fulfills C1-continuity requirement of Euler–Bernoulli beam and Kirchhoff plate theories. Compared with the traditional finite elements of beams and plates, IGA does not need extra rotational degrees-of-freedom while providing accurate results. The UV light-activated frequency control of LaSMP fully and partially laminated beam and plate structures based on the IGA is presented in this study. For the analysis of LaSMP partially laminated plates, the finite cell approach in the framework of IGA is proposed to handle NURBS geometries containing trimming features. The accuracy and efficiency of the proposed isogeometric approach are demonstrated via several numerical examples in frequency control. The results show that, with LaSMPs, broadband frequency control of beam and plate structures can be realized. Furthermore, changing LaSMP patch sizes on beams and plates further broadens its frequency control ranges. Studies suggest that: (1) the newly developed IGA combining finite cell approach is an effective numerical tool and (2) the maximum frequency manipulation ratios of beam and plate structures, respectively, reach 24.30% and 16.75%, which demonstrates the feasibility of LaSMPs-induced vibration control of structures.

References

References
1.
Lendlein
,
A.
,
Jiang
,
H.
,
Jünger
,
O.
, and
Langer
,
R.
,
2005
, “
Light-Induced Shape-Memory Polymers
,”
Nature
,
434
(
7035
), pp.
879
882
.
2.
Sodhi
,
J. S.
, and
Rao
,
I.
,
2011
, “
Light Activated Shape Memory Polymers: Some Inhomogeneous Deformation Examples
,”
ASME
Paper No. IMECE2011-63731.
3.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2013
, “
Flexoelectric Responses of Circular Rings
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021003
.
4.
Li
,
H. Y.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2015
, “
Frequency Control of Beams and Cylindrical Shells With Light-Activated Shape Memory Polymers
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011006
.
5.
Li
,
H. Y.
,
Guo
,
D.
, and
Tzou
,
H. S.
,
2017
, “
Light Induced Vibration Control of Parabolic Cylindrical Shell Panels
,”
J. Intell. Mater. Syst. Struct.
,
28
(
20
), pp.
2947
2958
.
6.
Beblo
,
R. V.
, and
Weiland
,
L.
,
2009
, “
Light-Activated Shape Memory Polymer Characterization
,”
ASME J. Appl. Mech.
,
76
(
1
), p.
011008
.
7.
Beblo
,
R. V.
,
2010
, “
Characterization and Modeling of Light-Activated Shape Memory Polymer
,”
Ph.D. thesis
, University of Pittsburgh, Pittsburgh, PA.
8.
Hughes
,
T. J. R.
,
Cottrell
,
J.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
9.
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Sangalli
,
G.
,
2010
, “
Efficient Quadrature for NURBS-Based Isogeometric Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
5–8
), pp.
301
313
.
10.
Kiendl
,
J.
,
Bletzinger
,
K.-U.
,
Linhard
,
J.
, and
Wüchner
,
R.
,
2009
, “
Isogeometric Shell Analysis With Kirchhoff-Love Elements
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
49
), pp.
3902
3914
.
11.
Nagy
,
A.
,
Abdalla
,
M.
, and
Gürdal
,
Z.
,
2010
, “
Isogeometric Sizing and Shape Optimization of Beam Structures
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
17
), pp.
1216
1230
.
12.
Schillinger
,
D.
,
Dedé
,
L.
,
Scott
,
M.
,
Evans
,
J.
,
Borden
,
M.
,
Rank
,
E.
, and
Hughes
,
T.
,
2010
, “
An Isogeometric Design-Through-Analysis Methodology Based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-Spline CAD Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
249–252
(
4
), pp.
116
150
.
13.
Bazilevs
,
Y.
,
Hsu
,
M.
,
Kiendl
,
J.
,
Wüchner
,
R.
, and
Bletzinger
,
K.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale—Part II: Fluid-Structure Interaction Modeling With Composite Blades
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
236
253
.
14.
De Lorenzis
,
L.
,
Temizer
,
I.
,
Wriggers
,
P.
, and
Zavarise
,
G.
,
2011
, “
A Large Deformation Frictional Contact Formulation Using NURBS-Based Isogeometric Analysis
,”
Int. J. Numer. Methods Eng.
,
87
(
13
), pp.
1278
1300
.
15.
Kapoor
,
H.
, and
Kapania
,
R.
,
2012
, “
Geometrically Nonlinear NURBS Isogeometric Finite Element Analysis of Laminated Composite Plates
,”
Compos. Struct.
,
94
(12), pp.
3434
3447
.
16.
Guo
,
Y.
, and
Ruess
,
M.
,
2015
, “
A Layerwise Isogeometric Approach for NURBS-Derived Laminate Composite Shells
,”
Compos. Struct.
,
124
, pp.
300
309
.
17.
Guo
,
Y.
, and
Ruess
,
M.
,
2015
, “
Nitsche's Method for a Coupling of Isogeometric Thin Shells and Blended Shell Structures
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
881
905
.
18.
Guo
,
Y.
,
Ruess
,
M.
, and
Schillinger
,
D.
,
2017
, “
A Parameter-Free Variational Coupling Approach for Trimmed Isogeometric Thin Shells
,”
Comput. Mech.
,
59
(4), pp.
693
715
.
19.
Zhou
,
K.
,
Liang
,
G.
, and
Tang
,
J.
,
2016
, “
Component Mode Synthesis Order-Reduction for Dynamic Analysis of Structure Modeled With NURBS Finite Element
,”
ASME J. Vib. Acoust.
,
138
(2), p.
021016
.
20.
Zhou
,
K.
, and
Tang
,
J.
,
2015
, “
Reducing Dynamic Response Variation Using NURBS Finite Element-Based Geometry Perturbation
,”
ASME J. Vib. Acoust.
,
137
(6), p.
061008
.
21.
Cottrell
,
J.
,
Reali
,
A.
,
Bazilevs
,
Y.
, and
Hughes
,
T.
,
2006
, “
Isogeometric Analysis of Structural Vibrations
,”
Comput. Methods Appl. Mech. Eng.
,
195
(41–43), pp.
5257
5296
.
22.
Zhang
,
G.
,
Alberdi
,
R.
, and
Khandelwal
,
K.
,
2016
, “
Analysis of Three-Dimensional Curved Beams Using Isogeometric Approach
,”
Eng. Struct.
,
117
, pp.
560
574
.
23.
Weeger
,
O.
,
Wever
,
U.
, and
Simeon
,
B.
,
2013
, “
Isogeometric Analysis of Nonlinear Euler-Bernoulli Beam Vibrations
,”
Nonlinear Dyn.
,
72
(
4
), pp.
813
835
.
24.
Shojaee
,
S.
,
Izadpanah
,
E.
,
Valizadeh
,
N.
, and
Kiendl
,
J.
,
2012
, “
Free Vibration Analysis of Thin Plates by Using a NURBS-Based Isogeometric Approach
,”
Finite Elem. Anal. Des.
,
61
, pp.
23
34
.
25.
Veiga
,
L.
,
Buffa
,
A.
,
Lovadina
,
C.
, and
Sangalli
,
G.
,
2012
, “
An Isogeometric Method for the Reissner-Mindlin Plate Bending Problem
,”
Comput. Methods Appl. Mech. Eng.
,
209–212
, pp.
45
53
.
26.
Farin
,
G.
,
1997
,
Curves and Surfaces for Computer Aided Geometric Design
,
4th ed.
,
Academic Press
,
Boston, MA
.
27.
Cottrell
,
J.
,
Hughes
,
T.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Towards Integration of CAD and FEM
,
Wiley
,
Singapore
.
28.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book, Monographs in Visual Communication
,
Springer-Verlag
,
Berlin
.
29.
Kim
,
H.
,
Seo
,
Y.
, and
Youn
,
S.
,
2009
, “
Isogeometric Analysis for Trimmed CAD Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
198
(37–40), pp.
2982
2995
.
30.
Schmidt
,
R.
,
Wuchner
,
R.
, and
Bletzinger
,
K.
,
2012
, “
Isogeometric Analysis of Trimmed NURBS Geometries
,”
Comput. Methods Appl. Mech. Eng.
,
241–244
, pp.
93
111
.
31.
Rank
,
E.
,
Ruess
,
M.
,
Kollmannsberger
,
S.
,
Schillinger
,
D.
, and
Duster
,
A.
,
2012
, “
Geometric Modeling, Isogeometric Analysis and the Finite Cell Method
,”
Comput. Methods Appl. Mech. Eng.
,
249–252
, pp.
104
115
.
32.
Tzou
,
H. S.
, and
Hollkamp
,
J. J.
,
1994
, “
Collocated Independent Modal Control With Self Sensing Orthogonal Piezoelectric Actuators (Theory and Experiment)
,”
J. Smart Mater. Struct.
,
3
(3), pp.
277
284
.
33.
Guo
,
Y.
, and
Tzou
,
H. S.
,
2017
, “
UV-Activated Frequency Control of Beams and Plates Based on Isogeometric Analysis
,”
ASME
Paper No. DETC2017-67667.
34.
Soedel
,
W.
,
2004
,
Vibration of Shells and Plates
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.