Squeak is an unwanted, annoying noise generated by self-excited, friction-induced vibration. A unique squeak test apparatus that can generate squeak noises consistently was developed by modifying and employing a sprag-slip mechanism. Such an apparatus enables building database that accurately ranks squeak propensity of material pairs and will be highly useful for noise, vibration, and harshness (NVH) engineers and vehicle interior designers. An analytical model of the apparatus was developed to identify instability conditions that induce unstable, large-amplitude vibration, therefore squeak noises. A finite element model was established and studied in this work to refine the design of the apparatus and better understand underlying phenomena of the squeak generation. Complex eigenvalue analysis (CEA) was used to study the instability of the system and results show that the instability occurs by the coalescence of two modes, which makes the effective damping of one of the coalesced modes negative. The instability condition from the CEA shows good agreement with the results obtained from the analytical model. Furthermore, dynamic transient analysis (DTA) was performed to investigate the stability of the system and confirm the instability conditions identified from the CEA. The effects of main design parameters on the stability were investigated by DTA. The results obtained from the actual tests show that the test apparatus consistently generates unstable vibration of a very large amplitude, indicating generation of squeak noises.

References

References
1.
Kinkaid
,
N. M.
,
O'Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2002
, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
.
2.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.
3.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.
4.
Papinniemi
,
A.
,
Lai
,
J. C. S.
,
Zhao
,
J.
, and
Loader
,
L.
,
2002
, “
Brake Squeal: A Literature Review
,”
Appl. Acoust.
,
63
(
4
), pp.
391
400
.
5.
Feeny
,
B.
,
Guran
,
A.
,
Hinriches
,
N.
, and
Popp
,
K.
,
1998
, “
A Historical Review on Dry Friction and Stick-Slip Phenomena
,”
ASME Appl. Mech. Rev.
,
51
(
5
), pp.
321
341
.
6.
Akay
,
A.
,
2002
, “
Acoustics of Friction
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1525
1548
.
7.
Mills
,
H. R.
,
1938
, “
Brake Squeal
,” The Institution of Automobile Engineers, Kolkata, India, Report No. 9162 B.
8.
Yuan
,
Y.
,
1995
, “
Study of the Effects of Negative Friction-Speed Slope on Brake Squeal
,” ASME Design Engineering Technical Conference, Boston, MA, Sept. 17–20, pp. 1135–1162.
9.
Ouyang
,
H.
,
Motterschead
,
J. E.
,
Cartmell
,
M. P.
, and
Friswell
,
M. I.
,
1998
, “
Friction-Induced Parametric Resonances in Disc: Effect of a Negative Friction Velocity Relationship
,”
J. Sound Vib.
,
209
(
2
), pp.
251
264
.
10.
Nishioka
,
M.
,
Hara
,
Y.
,
Nomoto
,
M.
, and.,
Ono
,
M.
,
2006
, “
Brake Squeals After Standing in Low Temperatures
,”
SAE
Paper No. 2006-01-3190.
11.
Friesen
,
T. V.
,
1983
, “
Chatter in Wet Brakes
,”
SAE
Paper No. 831318.
12.
McCann
,
B. P.
,
1992
, “
Frictional Vibrations in Structural Polymers
,” M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
13.
Sokoloff
,
J. B.
,
1991
, “
The Relationship Between Static and Kinetic Friction and Atomic Level ‘Stick-Slip' Motion
,”
18th International Conference on Metallurgical Coatings and Thin Films
, San Diego, CA, Apr. 22–26, pp.
208
212
.
14.
Balvedi
,
A. M.
,
Gerges
,
S. N. Y.
, and
Tousi
,
S.
,
2002
, “
Identification of Brake Squeal Noise Via Sound Intensity and Acoustical Measurement
,”
Inter-Noise
, Dearborn, MI, Aug. 19–21, pp.
1818
1823
.
15.
Triches
,
M. J.
,
Samir
,
N. Y.
, and
Jordan
,
R.
,
2004
, “
Reduction of Squeal Noise From Disc Brake Systems Using Constrained Layer Damping
,”
J. Braz. Soc. Mech. Sci. Eng.
,
26
(
3
), pp.
340
348
.
16.
Millner
,
N.
,
1978
, “
An Analysis of Disc Brake Squeal
,”
SAE
Paper No. 780332.
17.
Nouby
,
M. G.
,
Sufyan
,
M.
, and
Abd-El-Tawwab
,
A. M.
,
2012
, “
Understanding Mode-Coupling Mechanism of Brake Squeal Using Finite Element Analysis
,”
Int. J. Eng. Res. Appl.
,
2
(
1
), pp.
241
250
.
18.
Abdo
,
J.
,
Nouby
,
M.
,
Mathivanan
,
D.
, and
Srinivasan
,
K.
,
2010
, “
Reducing Disc Brake Squeal Through FEM Approach and Experimental Design Technique
,”
Int. J. Veh. Noise Vib.
,
6
(
2–4
), pp.
230
246
.
19.
Nouby
,
M.
,
Abdo
,
J.
, and
Srinivasan
,
K.
,
2011
, “
Evaluation of Disc Brake Materials for Squeal Reduction
,”
Tribol. Trans.
,
54
(
4
), pp.
644
656
.
20.
Tworzydlo
,
W. W.
,
Hamzeh
,
O. N.
,
Zaton
,
W.
, and
Judek
,
T. J.
,
1999
, “
Friction-Induced Oscillations of a Pin-on-Disk Slider: Analytical and Experimental Studies
,”
Wear
,
236
(
1–2
), pp.
9
23
.
21.
Lee
,
G. J.
,
Kim
,
J.
, and
Kim
,
K.
,
2015
, “
An Analytical Study of the Mode-Coupling Effect on the Instability of Friction-Induced Vibrations to Guide Design of a Squeak Test Apparatus
,”
Inter-Noise
, San Francisco, CA, Aug. 9–12, pp.
1293
1299
.
22.
Spurr
,
R. T.
,
1961
, “
A Theory of Brake Squeal
,”
Proc. Inst. Mech. Eng.: Automob. Div.
,
15
(
1
), pp.
33
52
.
23.
Liu
,
P.
,
Zheng
,
H.
,
Cai
,
C.
,
Wang
,
Y. Y.
,
Ang
,
K. H.
, and
Liu
,
G. R.
,
2007
, “
Analysis of Disc Brake Squeal Using the Complex Eigenvalue Analysis Method
,”
Appl. Acoust.
,
68
(
6
), pp.
603
615
.
24.
Mottershead
,
J. E.
,
1998
, “
Vibration- and Friction-Induced Instability in Disks
,”
Shock Vib. Dig.
,
30
(
1
), pp.
14
31
.
25.
Cao
,
Q.
,
Ouyang
,
H.
,
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
2004
, “
Linear Eigenvalue Analysis of the Disc-Brake Squeal Problem
,”
Int. J. Numer. Methods Eng.
,
61
(
9
), pp.
1546
1563
.
26.
Giannini
,
O.
,
Akay
,
A.
, and
Massi
,
F.
,
2006
, “
Experimental Analysis of Brake Squeal Noise on a Laboratory Brake Setup
,”
J. Sound Vib.
,
292
(
1–2
), pp.
1
20
.
27.
Giannini
,
O.
, and
Sestieri
,
A.
,
2006
, “
Predictive Model of Squeal Noise Occurring on a Laboratory Brake
,”
J. Sound Vib.
,
296
(
3
), pp.
583
601
.
28.
Meziane
,
A.
,
Baillet
,
L.
, and
Laulagnet
,
B.
,
2010
, “
Experimental and Numerical Investigation of Friction-Induced Vibration of a Beam-on-Beam in Contact With Friction
,”
Appl. Acoust.
,
71
(
9
), pp.
843
853
.
29.
Qian
,
W. J.
,
Chen
,
G. X.
, and
Zhou
,
Z. R.
,
2013
, “
Dynamics Transient Analysis of Squealing Vibration of a Reciprocating Sliding System
,”
Wear
,
301
(
1–2
), pp.
47
56
.
30.
Song
,
Y.
,
Chang
,
F. S.
,
Lipinski
,
P.
, and
Paiva
,
M.
,
1997
, “
Finite Element Prediction of Backlite Molding Squeak Noise
,”
SAE
Paper No. 970584.
31.
Kuo
,
E. Y.
,
2003
, “
Up-Front body Structural Designs for Squeak and Rattle Prevention
,”
SAE
Paper No. 2003-01-1523.
32.
Kim
,
K.
,
Lee
,
S. W.
,
Hong
,
S. G.
,
Kim
,
J.
,
Lee
,
G. J.
,
Choi
,
J. M.
, and
Kim
,
Y. J.
,
2015
, “
A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly
,”
SAE
Paper No. 2015-01-2257.
33.
Sonie
,
D. E.
,
Evensen
,
H. A.
, and
Van Karsen
,
C. D.
,
1999
, “
A Design Assessment Tool for Squeal and Rattle Performance
,”
IMAC-XVII, A Conference and Exposition on Structural Dynamics
, Kissimmee, PL, Feb. 8–11, pp.
1428
1432
.
34.
Kuo
,
E. Y.
, and
Mehta
,
P. R.
,
2006
, “
Reliability and Quality of Body Concept CAE Models for Design Direction Studies
,”
SAE
Paper No. 2006-01-1617.
35.
Kuo
,
E. Y.
,
Mehta
,
P. R.
, and
Geck
,
P. E.
,
2002
, “
High Mileage Squeak and Rattle Robustness Assessment for Super Duty Cab Weight Reduction Using High Strength Steel and Adhesive Bonding
,”
SAE
Paper No. 2002-01-3064.
36.
Lee
,
G. J.
, and
Kim
,
J.
,
2016
, “
Design of a Squeak Test Apparatus Based on a Modified Sprag-Slip Mechanism
,”
INTER-NOISE and NOISE-CON Congress
, Providence, RI, June 13–15, pp.
239
244
.
37.
Lee
,
G. J.
, and
Kim
,
J.
,
2016
, “
Development of a Test Apparatus That Consistently Generates Squeak to Rate Squeak Propensity of a Pair of Materials
,”
Inter-Noise
, Hamburg, Germany, Aug. 21–24, pp.
1265
1270
.
38.
Lee
,
G. J.
, and
Kim
,
J.
,
2016
, “
Analysis of a New Squeak Test Apparatus Developed for Objective Rating of Squeak Propensity and Building a Database to Minimize Squeak Problems in Automotive Engineering
,”
Inter-Noise
, Hamburg, Germany, Aug. 21–24, pp.
1271
1277
.
39.
Gere
,
J. M.
, and
Goodno
,
B. J.
,
2009
,
Mechanics of Materials
,
7th ed.
,
Cengage Learning
,
Toronto, ON
, Canada, Chap. 9.
40.
Inman
,
D. J.
,
2008
,
Engineering Vibrations
,
3rd ed.
,
Pearson Education
,
Upper Saddle River, NJ
, Chap. 6.
41.
Strogatz
,
S. H.
,
2015
,
Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry, and Engineering
,
2nd ed.
,
Westview Press
,
New York
, pp.
146
181
.
42.
Chandrika
,
U. K.
, and
Kim
,
J.
,
2010
, “
Development of an Algorithm for Automatic Detection and Rating of Squeak and Rattle Events
,”
J. Sound Vib.
,
329
(
21
), pp.
4567
4577
.
43.
Lee
,
G. J.
,
Kim
,
J.
,
Chandrika
,
U. K.
, and
Kim
,
Y.
,
2014
, “
Computerized Detection and Rating of Squeak and Rattle Events in Automobiles
,”
Noise-Con
, Fort Lauderdale, FL, Sept. 8–10, pp.
864
872
.
44.
Lee
,
G. J.
,
Kim
,
K.
, and
Kim
,
J.
,
2015
, “
Development of an Algorithm to Automatically Detect and Distinguish Squeak and Rattle Noises
,”
SAE
Paper No. 2015-01-2258.
You do not currently have access to this content.