Composite structures integrated with viscoelastic materials are becoming more and more popular in the application of vibration suppression. This paper presents a comprehensive approach for analyzing this class of structures with an improved Burgers model, from material constitutive modeling, finite element formulation to solution method. The refined model consists of a spring component and multiple classical Burgers components in parallel, where the spring component converts the viscoelastic fluid model to a viscoelastic solid model and the multiple Burgers components increase the accuracy. Through the introduction of auxiliary coordinates, the model is applied to the finite element formulation of composites structures with viscoelastic materials. Consequently, a complicated Volterra integro-differential equation is transformed into a standard second-order differential equation and solution techniques for linear elastic structures can be directly used for elastic–viscoelastic composite structures. The improved Burgers model is a second-order mini-oscillator model, in which every mini-oscillator term has four parameters. The model parameters determination is performed by optimization algorithm. By comparison of model fitting results for a typical viscoelastic material, the refined model is better in accuracy than Golla–Hughes–McTavish (GHM) model and original Burgers model. Finally, several numerical examples are presented to further verify the effectiveness of the improved Burgers model.

References

References
1.
Johnson
,
C. D.
, and
Kienholz
,
D.
,
1981
, “
Finite Element Prediction of Damping in Structures With Constrained Viscoelastic Layers
,”
AIAA J.
,
20
(
9
), pp.
1284
1290
.https://arc.aiaa.org/doi/abs/10.2514/3.51190?journalCode=aiaaj
2.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.
3.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1985
, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
(
6
), pp.
918
925
.
4.
Bagley
,
R. L.
, and
Calico
,
R. A.
,
1991
, “
Fractional Order State Equations for the Control of Viscoelastically Damped Structures
,”
J. Guid., Control, Dyn.
,
14
(
2
), pp.
304
311
.
5.
Lesieutre
,
G. A.
, and
Mingori
,
D. L.
,
1990
, “
Finite Element Modeling of Frequency Dependent Material Damping Using Augmenting Thermodynamic Fields
,”
J. Guid., Control, Dyn.
,
13
(
6
), pp.
1040
1050
.
6.
Lesieutre
,
G. A.
,
1992
, “
Finite Elements for Dynamic Modeling of Uniaxial Rods With Frequency Dependent Material Properties
,”
Int. J. Solids Struct.
,
29
(
12
), pp.
1567
1579
.
7.
Lesieutre
,
G. A.
, and
Bianchini
,
E.
,
1995
, “
Time-Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields
,”
ASME J. Vib. Acoust.
,
117
(
4
), pp.
424
430
.
8.
Yiu
,
Y. C.
,
1993
, “
Finite Element Analysis of Structures With Classical Viscoelastic Materials
,”
34th Structures, Structural Dynamics, and Materials Conference
, La Jolla, CA, Apr. 19–22, pp.
2110
2119
.http://adsabs.harvard.edu/abs/1993ssdm.conf.2110Y
9.
Zhang
,
J.
, and
Zheng
,
G. T.
,
2007
, “
The Biot Model and Its Application in Viscoelastic Composite Structures
,”
ASME J. Vib. Acoust.
,
129
(
5
), pp.
533
540
.
10.
Golla
,
D. F.
, and
Hughes
,
P. C.
,
1985
, “
Dynamics of Viscoelastic Structures—A Time-Domain Finite Element Formulation
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
897
906
.
11.
Mctavish
,
J.
, and
Hughes
,
P. C.
,
1992
, “
Prediction and Measurement of Modal Damping Factors for Viscoelastic Space Structures
,”
AIAA J.
,
30
(
5
), pp.
1392
1399
.
12.
Kumar
,
R. S.
, and
Ray
,
M. C.
,
2013
, “
Active Control of Geometrically Nonlinear Vibrations of Doubly Curved Smart Sandwich Shells Using 1-3 Piezoelectric Composites
,”
Compos. Struct.
,
105
, pp.
173
187
.
13.
Kattimani
,
S. C.
, and
Ray
,
M. C.
,
2014
, “
Smart Damping of Geometrically Nonlinear Vibrations of Magneto-Electro-Elastic Plates
,”
Compos. Struct.
,
114
, pp.
51
63
.
14.
Zhang
,
D. D.
, and
Zheng
,
L.
,
2014
, “
Active Vibration Control of Plate Partially Treated With ACLD Using Hybrid Control
,”
Int. J. Aerosp. Eng.
, 2014, p. 432970.
15.
Martin
,
L. A.
, and
Inman
,
D. J.
,
2013
, “
A Novel Viscoelastic Material Modulus Function for Modifying the Golla–Hughes–McTavish Method
,”
Int. J. Acoust. Vib.
,
18
(
3
), pp.
102
108
.https://experts.umich.edu/en/publications/a-novel-viscoelastic-material-modulus-function-for-modifying-the-
16.
Gourdon
,
E.
,
Sauzeat
,
C.
,
Benedetto
,
H. D.
, and
Bilodeau
,
K.
,
2015
, “
Seven-Parameter Linear Viscoelastic Model Applied to Acoustical Damping Materials
,”
ASME J. Vib. Acoust.
,
137
(6), p.
061003
.
17.
Filippi
,
M.
,
Carrera
,
E.
, and
Regalli
,
A. M.
,
2016
, “
Layerwise Analysis of Compact and Thin-Walled Beams Made of Viscoelastic Materials
,”
ASME J. Vib. Acoust.
,
138
(6), p.
064501
.
18.
Druesne
,
F.
,
Hamdaoui
,
M.
,
Lardeur
,
P.
, and
Daya
,
E. M.
,
2016
, “
Variability of Dynamic Responses of Frequency Dependent Visco-Elastic Sandwich Beams With Material and Physical Properties Modeled by Spatial Random Fields
,”
Compos. Struct.
,
152
, pp.
316
323
.
19.
Druesne
,
F.
,
Hamdaoui
,
M.
, and
Yin
,
Q.
,
2017
, “
Variability Analysis of Modal Characteristics of Frequency-Dependent Visco-Elastic Three-Layered Sandwich Beams With Spatial Random Geometrical and Material Properties
,”
ASME J. Vib. Acoust.
,
139
(6), p.
061007
.
20.
Burgers
,
J. M.
,
1939
, “
Mechanical Consideration-Model Systems Phenomenological Theories of Relation and of Viscosity, First Report on Viscosity and Plasticity—Prepared by the Committee for Study of Viscosity of the Academy of Sciences at Amsterdam
,”
Nordemann Publishing
,
Nordemann, NewYork
.
21.
Ullidtz
,
P.
,
1998
,
Modeling of Flexible Pavement Response and Performance
,
Technical University of Denmark
,
Copenhagen, Denmark
.
22.
Muliana
,
A.
,
Rajagopal
,
K. R.
, and
Wineman
,
A.
,
2013
, “
On the Response of Burgers' Fluid and Its Generalizations With Pressure Dependent Moduli
,”
Mech. Time-Depend. Mater.
,
17
(
2
), pp.
147
169
.
23.
Feng
,
H.
,
Pettinari
,
M.
, and
Stang
,
H.
,
2015
, “
Study of Normal and Shear Material Properties for Viscoelastic Model of Asphalt Mixture by Discrete Element Method
,”
Constr. Build. Mater.
,
98
, pp.
366
375
.
24.
Papanicolaou
,
G. C.
,
Lagas
,
G. P.
, and
Zaoutsos
,
S. P.
,
2015
, “
Viscoelastic Behavior of Hybrid Building Materials
,”
J. Appl. Polym. Sci.
,
132
(
6
), pp.
1
10
.
25.
Wang
,
Y.
, and
Inman
,
D. J.
,
2013
, “
Finite Element Analysis and Experimental Study on Dynamic Properties of a Composite Beam With Viscoelastic Damping
,”
J. Sound Vib.
,
332
(
23
), pp.
6177
6191
.
26.
Liu
,
T. X.
,
Hua
,
H. X.
, and
Zhang
,
Z. Y.
,
2004
, “
Robust Control of Plate Vibration Via Active Constrained Layer Damping
,”
Thin-Walled Struct.
,
42
(3), pp.
427
448
.
27.
Zhang
,
L.
,
Du
,
H. P.
,
Shi
,
Y. M.
, and
Shi
,
X. Z.
,
2002
, “
Parametric Determination for GHM of ZN-1 Viscoelastic Material
,”
Rare Met. Mater. Eng.
,
31
(
2
), pp.
92
95
.
28.
Siala
,
W.
,
Abdennadher
,
M.
,
Hammami
,
L.
, and
Haddar, M.
,
2008
, “
Modal Damping Prediction of Composite Panel With Visco-Elastic Thick Core
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
11
), pp.
2077
2086
.
29.
Chen
,
Q.
, and
Chan
,
Y. W.
,
2000
, “
Integral Finite Element Method for Dynamical Analysis of Elastic-Viscoelastic Composite Structures
,”
Comput. Struct.
,
74
(
1
), pp.
51
64
.
You do not currently have access to this content.