This paper examines the nonlinear vibration of a single conductor with Stockbridge dampers. The conductor is modeled as a simply supported beam and the Stockbridge damper is reduced to a mass–spring–damper–mass system. The nonlinearity of the system stems from the midplane stretching of the conductor and the cubic equivalent stiffness of the Stockbridge damper. The derived nonlinear equations of motion are solved by the method of multiple scales. Explicit expressions are presented for the nonlinear frequency, solvability conditions, and detuning parameter. The present results are validated via comparisons with those in the literature. Parametric studies are conducted to investigate the effect of variable control parameters on the nonlinear frequency and the frequency response curves. The findings are promising and open a horizon for future opportunities to optimize the design of nonlinear absorbers.

References

References
1.
Chan
,
J.
,
Harvard
,
D.
,
Rawlins
,
C.
,
Diana
,
G.
,
Cloutier
,
L.
,
Lilien
,
J.
,
Hardy
,
C.
,
Wang
,
J.
, and
Goel
,
A.
,
2009
,
EPRI Transmission Line Reference Book: Wind-Induced Conductor Motion
, Electric Power Research Institute, Palo Alto, CA.
2.
Barry
,
O.
,
Zu
,
J. W.
, and
Oguamanam
,
D. C. D.
,
2015
, “
Analytical and Experimental Investigation of Overhead Transmission Line Vibration
,”
J. Vib. Control
,
21
(
14
), pp.
2825
2837
.
3.
Barry
,
O.
,
Oguamanam
,
D. C.
, and
Lin
,
D. C.
,
2013
, “
Aeolian Vibration of a Single Conductor With a Stockbridge Damper
,”
Proc. Inst. Mech. Eng. Part C.
,
227
(
5
), pp.
935
945
.
4.
Oliveira
,
A. R.
, and
Freire
,
D. G.
,
1994
, “
Dynamical Modelling and Analysis of Aeolian Vibrations of Single Conductors
,”
IEEE Trans. Power Delivery
,
9
(
3
), pp.
1685
1693
.
5.
Verma
,
H.
, and
Hagedorn
,
P.
,
2005
, “
Wind Induced Vibrations of Long Electrical Overhead Transmission Line Spans: A Modified Approach
,”
Wind Struct.
,
8
(
2
), pp.
89
106
.
6.
Schfer
,
B.
,
1984
, “
Dynamical Modelling of Wind-Induced Vibrations of Overhead Lines
,”
Int. J. Non-Linear Mech.
,
19
(
5
), pp.
455
467
.
7.
Kraus
,
M.
, and
Hagedorn
,
P.
,
1991
, “
Aeolian Vibrations: Wind Energy Input Evaluated From Measurements on an Energized Transmission Line
,”
IEEE Trans. Power Delivery
,
6
(
3
), pp.
1264
1270
.
8.
Tompkins
,
J. S.
,
Merrill
,
L. L.
, and
Jones
,
B. L.
,
1956
, “
Quantitative Relationships in Conductor Vibration Damping
,”
Trans. Am. Inst. Electr. Eng. Part III
,
75
(
3
), pp.
879
896
.
9.
Nigol
,
O.
,
Heics
,
R. C.
, and
Houston
,
H. J.
,
1985
, “
Aeolian Vibration of Single Conductors and Its Control
,”
IEEE Trans. Power Apparatus Syst.
,
PAS-104
(
11
), pp.
3245
3254
.
10.
Rawlins
,
C. B.
,
1958
, “
Recent Developments in Conductor Vibration Research
,” Alcoa Research Laboratories, Pittsburgh, PA, Technical Paper No. 13.
11.
Barry
,
O.
,
Zu
,
J. W.
, and
Oguamanam
,
D. C. D.
,
2014
, “
Forced Vibration of Overhead Transmission Line: Analytical and Experimental Investigation
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041012
.
12.
Barry
,
O.
,
Long
,
R.
, and
Oguamanam
,
D. C. D.
,
2016
, “
Simplified Vibration Model and Analysis of a Single-Conductor Transmission Line With Dampers
,”
Proc. Inst. Mech. Eng., Part C
,
231
(11), pp. 4150–4162.
13.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
14.
Nayfeh
,
A. H.
,
1981
,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
15.
Dowell
,
E. H.
,
1980
, “
Component Mode Analysis of Nonlinear and Nonconservative Systems
,”
ASME J. Appl. Mech.
,
47
(
1
), pp.
172
176
.
16.
Pakdemirli
,
M.
, and
Nayfeh
,
A. H.
,
1994
, “
Nonlinear Vibrations of a Beam-Spring-Mass System
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
433
439
.
17.
Barry
,
O. R.
,
Oguamanam
,
D. C. D.
, and
Zu
,
J. W.
,
2014
, “
Nonlinear Vibration of an Axially Loaded Beam Carrying Multiple Massspringdamper Systems
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1597
1608
.
18.
Low
,
K. H.
,
1997
, “
Comments on ‘Non-Linear Vibrations of a Beam-Mass System Under Different Boundary Conditions’(With Authors' Reply)
,”
J. Sound Vib.
,
207
(
2
), pp.
284
287
.
19.
Mestrom
,
R. M. C.
,
Fey
,
R. H. B.
,
Phan
,
K. L.
, and
Nijmeijer
,
H.
,
2010
, “
Simulations and Experiments of Hardening and Softening Resonances in a Clampedclamped Beam MEMS Resonator
,”
Sens. Actuators A: Phys.
,
162
(
2
), pp.
225
234
.
20.
Ozkaya
,
E.
, and
Pakdemirli
,
M.
,
1999
, “
Non-Linear Vibrations of a Beammass System With Both Ends Clamped
,”
J. Sound Vib.
,
221
(
3
), pp.
491
503
.
21.
Ozkaya
,
E.
,
Pakdemirli
,
M.
, and
Öz
,
H. R.
,
1997
, “
Non-Linear Vibrations of a Beam-Mass System Under Different Boundary Conditions
,”
J. Sound Vib.
,
199
(
4
), pp.
679
696
.
22.
Ozkaya
,
E.
,
2002
, “
Non-Linear Transverse Vibrations of a Simply Supported Beam Carrying Concentrated Masses
,”
J. Sound Vib.
,
257
(
3
), pp.
413
424
.
23.
Lin
,
H. Y.
, and
Tsai
,
Y. C.
,
2007
, “
Free Vibration Analysis of a Uniform Multi-Span Beam Carrying Multiple Springmass Systems
,”
J. Sound Vib.
,
302
(
3
), pp.
442
456
.
24.
Hassanpour
,
P. A.
,
Cleghorn
,
W. L.
,
Mills
,
J. K.
, and
Esmailzadeh
,
E.
,
2007
, “
Exact Solution of the Oscillatory Behavior Under Axial Force of a Beam With a Concentrated Mass Within Its Interval
,”
J. Vib. Control
,
13
(
12
), pp.
1723
1739
.
25.
Naguleswaran
,
S.
,
2001
, “
Transverse Vibrations of an EulerBernoulli Uniform Beam Carrying Two Particles In-Span
,”
Int. J. Mech. Sci.
,
43
(
12
), pp.
2737
2752
.
26.
Wu
,
J. S.
, and
Lin
,
T. L.
,
1990
, “
Free Vibration Analysis of a Uniform Cantilever Beam With Point Masses by an Analytical-and-Numerical-Combined Method
,”
J. Sound Vib.
,
136
(
2
), pp.
201
213
.
27.
Grgze
,
M.
,
1998
, “
On the Alternative Formulations of the Frequency Equation of a BernoulliEuler Beam to Which Several Spring-Mass Systems Are Attached in-Span
,”
J. Sound Vib.
,
217
(
3
), pp.
585
595
.
28.
Barry
,
O. R.
,
Zhu
,
Y.
,
Zu
,
J. W.
, and
Oguamanam
,
D. C. D.
,
2012
, “
Free Vibration Analysis of a Beam Under Axial Load Carrying a Mass-Spring-Mass
,”
ASME
Paper No. DETC2012-70144.
29.
Kirk
,
C. L.
, and
Wiedemann
,
S. M.
,
2002
, “
Natural Frequencies and Mode Shapes of a Freefree Beam With Large End Masses
,”
J. Sound Vib.
,
254
(
5
), pp.
939
949
.
30.
Wu
,
J. S.
, and
Huang
,
C. G.
,
1995
, “
Free and Forced Vibrations of a Timoshenko Beam With Any Number of Translational and Rotational Springs and Lumped Masses
,”
Int. J. Numer. Methods Biomed. Eng.
,
11
(
9
), pp.
743
756
.
31.
Wu, J.-S.
, and
Chou, H.-M.
, 1998, “
Free Vibration Analysis of a Cantilever Beam Carrying any Number of Elastically Mounted Point Masses With the Analytical-And-Numerical-Combined Method
,”
J. Sound Vib.
,
213
(2), pp. 317–332.
32.
Bokaian
,
A.
,
1990
, “
Natural Frequencies of Beams Under Tensile Axial Loads
,”
J. Sound Vib.
,
142
(
3
), pp.
481
498
.
33.
Samani
,
F. S.
,
Pellicano
,
F.
, and
Masoumi
,
A.
,
2013
, “
Performances of Dynamic Vibration Absorbers for Beams Subjected to Moving Loads
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
1065
1079
.
34.
Boisseau
,
S.
,
Despesse
,
G.
, and
Seddik
,
B. A.
,
2013
, “
Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061013
.
35.
Bukhari
,
M. A.
,
Barry
,
O.
, and
Tanbour
,
E.
,
2017
, “
On the Vibration Analysis of Power Lines With Moving Dampers
,”
J. Vib. Control
, epub.
36.
Barry
,
O.
,
Long
,
R.
, and
Oguamanam
,
D. C. D.
,
2017
, “
Rational Damping Arrangement Design for Transmission Lines Vibrations: Analytical and Experimental Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
5
), p.
051012
.
You do not currently have access to this content.