Viscoelastic materials have frequency and temperature-dependent properties and they can be used as passive controlling devices in wide range of vibration applications. In order to design active control for viscoelastic systems, an accurate mathematical modeling is needed. In practice, various material models and approximation techniques are used to model the dynamic behavior of viscoelastic systems. These models are then transformed into approximating state-space models, which introduces several challenges such as introduction of nonphysical internal state variables and requirement of observer/state estimator design. In this paper, it is shown that the active control for viscoelastic structures can be designed accurately by only utilizing the available receptance transfer functions (RTF) and hence eliminating the need for state-space modeling for control design. By using the recently developed receptance method, it is shown that active control for poles and zeros assignment of the viscoelastic systems can be achieved. It is also shown that a nested active controller can also be designed for continuous structures (beams/rods) supported by viscoelastic elements. It is highlighted that such a controller design requires modest size of RTF and solution of the set of linear system of equations.

References

References
1.
Brinson
,
H.
, and
Brinson
,
L. C.
,
2016
,
Polymer Engineering Science and Viscoelasticity
,
Springer-Verlag
,
New York
.
2.
Biot
,
M. A.
,
1958
, “
Linear Thermodynamics and the Mechanics of Solids
,”
Third U. S. National Congress of Applied Mechanics
, Providence, RI, June 11–14, pp. 1–18.http://www.pmi.ou.edu/Biot2005/papers/FILES/076.PDF
3.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.
4.
Golla
,
D. F.
, and
Hughes
,
P. C.
,
1985
, “
Dynamics of Viscoelastic Structures—a Time-Domain, Finite Element Formulation
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
897
906
.
5.
Adhikari
,
S.
,
2001
, “
Damping Models for Structural Vibration
,”
Ph.D. dissertation
, University of Cambridge, Cambridge, UK.https://www.researchgate.net/file.PostFileLoader.html?id=5960bfe8ed99e12aeb151664&assetKey=AS%3A513808113967104%401499512808358
6.
Singh
,
K. V.
,
2016
, “
Eigenvalue and Eigenvector Computation for Discrete and Continuous Structures Composed of Viscoelastic Materials
,”
Int. J. Mech. Sci.
,
110
, pp.
127
137
.
7.
Menon
,
S.
, and
Tang
,
J.
,
2004
, “
A State-Space Approach for the Dynamic Analysis of Viscoelastic Systems
,”
Comput. Struct.
,
82
(
15
), pp.
1123
1130
.
8.
Adhikari
,
S.
, and
Wagner
,
N.
,
2003
, “
Analysis of Asymmetric Nonviscously Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
885
893
.
9.
Vasques
,
C. M. A.
, and
Rodrigues
,
J. D.
,
2008
, “
Combined Feedback/Feedforward Active Control of Vibration of Beams With ACLD Treatments: Numerical Simulation
,”
Comput. Struct.
,
86
(
3
), pp.
292
306
.
10.
Trindade
,
M. A.
,
Benjeddou
,
A.
, and
Ohayon
,
R.
,
2000
, “
Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping
,”
ASME J. Vib. Acoust.
,
122
(
2
), pp.
169
174
.
11.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
Wiley
,
New York
.
12.
McTavish
,
D. J.
,
Hughes
,
P. C.
,
Soucy
,
Y.
, and
Graham
,
W. B.
,
1992
, “
Prediction and Measurement of Modal Damping Factors for Viscoelastic Space Structures
,”
AIAA J.
,
30
(
5
), pp.
1392
1399
.
13.
Ram
,
Y. M.
, and
Mottershead
,
J. E.
,
2007
, “
Receptance Method in Active Vibration Control
,”
AIAA J.
,
45
(
3
), pp.
562
567
.
14.
Ouyang
,
H.
,
Richiedei
,
D.
, and
Trevisani
,
A.
,
2013
, “
Pole Assignment for Control of Flexible Link Mechanisms
,”
J. Sound Vib.
,
332
(
12
), pp.
2884
2899
.
15.
Singh
,
K. V.
,
Brown
,
R. N.
, and
Kolonay
,
R.
,
2016
, “
Receptance-Based Active Aeroelastic Control With Embedded Control Surfaces Having Actuator Dynamics
,”
J. Aircr.
,
53
(
3
), pp.
830
845
.
16.
Adhikari
,
S.
, and
Pascual
,
B.
,
2011
, “
Iterative Methods for Eigenvalues of Viscoelastic Systems
,”
ASME J. Vib. Acoust.
,
133
(
2
), p.
021002
.
17.
Li
,
L.
,
Hu
,
Y.
, and
Wang
,
X.
,
2013
, “
Improved Approximate Methods for Calculating Frequency Response Function Matrix and Response of MDOF Systems With Viscoelastic Hereditary Terms
,”
J. Sound Vib.
,
332
(
15
), pp.
3945
3956
.
18.
Maha
,
A.
, and
Ram
,
Y. M.
,
2014
, “
The Method of Receptances for Continuous Rods
,”
ASME J. Appl. Mech.
,
81
(
7
), p.
071009
.
19.
Pierson
,
H.
,
Brevick
,
J.
, and
Hubbard
,
K.
,
2013
, “
The Effect of Discrete Viscous Damping on the Transverse Vibration of Beams
,”
J. Sound Vib.
,
332
(
18
), pp.
4045
4053
.
20.
Jones
,
D. I.
,
2001
,
Handbook of Viscoelastic Vibration Damping
,
Wiley
,
New York
.
21.
Petyt
,
M.
,
2010
,
Introduction to Finite Element Vibration Analysis
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.