The response of a single degree-of-freedom spring mass system connected to a vibration absorber with a friction damper and subjected to a sinusoidal excitation is considered in this paper. Two possible configurations of the friction damper, rigid and flexible, are explored in details. Optimization of the parameters of absorbers with both these damper configurations to minimize the peak value of the frequency response of the primary system is presented. Results from this minimax optimization approach are compared to the classical solutions for a vibration absorber with linear viscous damper.

References

References
1.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover Publications
, New York.
2.
Sinha
,
A.
,
2010
,
Vibration of Mechanical Systems
,
Cambridge University Press
, New York.
3.
Sinha
,
A.
,
2009
, “
Optimal Damped Vibration Absorber for Narrow Band Random Excitations: A Mixed H2/H∞ Optimization
,”
Probab. Eng. Mech.
,
24
(
2
), pp.
251
254
.
4.
Sinha
,
A.
,
2015
, “
Optimal Damped Vibration Absorber: Including Multiple Modes and Excitation Due to Rotating Unbalance
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
064501
.
5.
Asami
,
T.
, and
Nishihara
,
O.
,
2003
, “
Closed-Form Exact Solution to H∞ Optimization of Dynamic Vibration Absorbers (Application to Different Transfer Functions and Damping Systems)
,”
ASME J. Vib. Acoust.
,
125
(
3
), pp.
398
405
.
6.
Ricciardelli
,
F.
, and
Vickery
,
B. J.
,
1999
, “
Tuned Vibration Absorbers With Dry Friction Damping
,”
J. Earthquake Eng. Struct. Dyn.
,
28
(7), pp.
707
723
.
7.
Gewei
,
Z.
, and
Basu
,
B.
,
2010
, “
A Study on Friction-Tuned Mass Damper: Harmonic Solution and Statistical Linearization
,”
J. Vib. Control
,
17
(
5
), pp.
721
731
.
8.
Pisal
,
A. Y.
, and
Jangid
,
R. S.
,
2016
, “
Dynamic Response of Structure With Tuned Mass Friction Damper
,”
Int. J. Adv. Struct. Eng.
,
8
(4), pp.
363
377
.
9.
Hartung
,
A.
,
Schmieg
,
H.
, and
Vielsack
,
P.
,
2001
, “
Passive Vibration Absorber With Dry Friction
,”
Arch. Appl. Mech.
,
71
(6–7), pp.
463
472
.
10.
Abe
,
M.
,
1996
, “
Tuned Mass Dampers for Structures With Bilinear Hysteresis
,”
ASCE J. Eng. Mech.
,
122
(
8
), pp.
797
800
.
11.
Sinha
,
A.
, and
Griffin
,
J. H.
,
1985
, “
Stability of Limit Cycles in Frictionally Damped and Aerodynamically Unstable Rotor Stages
,”
J. Sound Vib.
,
103
(
3
), pp.
341
356
.
12.
Fang
,
J.
,
Wang
,
Q.
, and
Wang
,
S.
,
2012
, “
Min-Max Criterion to the Optimal Design of Vibration Absorber in a System With Coulomb Friction and Viscous Damping
,”
Nonlinear Dyn.
,
70
(1), pp. 393–400.
13.
Vidmar
,
B. J.
,
Feeny
,
B. F.
,
Shaw
,
S.
,
Haddow
,
A. G.
,
Geist
,
B. K.
, and
Verhanovitz
,
N. J.
,
2012
, “
The Effects of Coulomb Friction on the Performance of Centrifugal Pendulum Vibration Absorbers
,”
Nonlinear Dyn.
,
69
(1–2), pp.
589
600
.
14.
Sinha
,
A.
,
2016
, “
Vibration Absorbers for a Mistuned Bladed Disk
,”
ASME
Paper No. GT2016-56076.
15.
Cha
,
D.
, and
Sinha
,
A.
,
2010
, “
Computation of the Optimal Normal Load for a Mistuned and Frictionally Damped Bladed Disk Assembly Under Different Types of Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021012
.
16.
Yang
,
B. D.
, and
Menq
,
C. H.
,
1998
, “
Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,”
J. Sound Vib.
,
217
(
5
), pp.
909
925
.
17.
Sanliturk
,
K. Y.
,
Ewins
,
D. J.
,
Elliott
,
R.
, and
Green
,
J.
,
2001
, “
Friction Damper Optimization: Simulation of Rainbow Tests
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
930
939
.
18.
Melanie
,
M.
,
1996
,
An Introduction to Genetic Algorithms
,
MIT Press
,
Cambridge, MA
.
19.
MATLAB
,
2016
, “
Matlab
,” The MathWorks, Inc., Natick, MA.
20.
Bathe
,
K.-J.
,
1996
,
Finite Element Procedures
,
1st ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.