An analytical model is developed to investigate the vibro-acoustic response of a double-walled cylindrical shell with the inner wall perforated when excited by the external turbulent boundary layer (TBL) pressure fluctuations. The shell motion is governed by the Donnell’s thin shell theory, and the mean particle velocity model is employed to describe the boundary condition between the microperforated shell and fluid media. Numerical results indicate that the transmission loss (TL) for the configuration of microperforating the inner wall could be larger than that for the conventional solid double-walled cylindrical shell with and without the core of porous material over a wide frequency range. Comparison between TL results with excitations from the TBL and the acoustic diffuse field (ADF) shows that with the thought of microperforating the inner shell, to reduce the acoustical excitation will be of more importance than the flow excitation over the ring frequency for a quiet interior space. Parametric studies illustrate that the perforation ratio is the main factor affecting the sound insulation performance through the total reactance.

References

References
1.
Bhat
,
W. V.
,
1971
, “
Flight Test Measurement of Exterior Turbulent Boundary Layer Pressure Fluctuations on Boeing Model 737 Airplane
,”
J. Sound Vib.
,
14
(
4
), pp.
439
457
.
2.
Bhat
,
W.
,
1971
, “
Use of Correlation Technique for Estimating In-Flight Noise Radiated by Wing-Mounted Jet Engines on a Fuselage
,”
J. Sound Vib.
,
17
(
3
), pp.
349
355
.
3.
Wilby
,
J.
, and
Gloyna
,
F.
,
1972
, “
Vibration Measurements of an Airplane Fuselage Structure—I: Turbulent Boundary Layer Excitation
,”
J. Sound Vib.
,
23
(
4
), pp.
443
466
.
4.
Wilby
,
J.
, and
Gloyna
,
F.
,
1972
, “
Vibration Measurements of an Airplane Fuselage Structure—II: Jet Noise Excitation
,”
J. Sound Vib.
,
23
(
4
), pp.
467
486
.
5.
Graham
,
W. R.
,
1996
, “
Boundary Layer Induced Noise in Aircraft—Part I: The Flat Plate Model
,”
J. Sound Vib.
,
192
(
1
), pp.
101
120
.
6.
Graham
,
W. R.
,
1996
, “
Boundary Layer Induced Noise in Aircraft—Part II: The Trimmed Flat Plate Model
,”
J. Sound Vib.
,
192
(
1
), pp.
121
138
.
7.
Graham
,
W. R.
,
1997
, “
A Comparison of Models for the Wavenumber–Frequency Spectrum of Turbulent Boundary Layer Pressures
,”
J. Sound Vib.
,
206
(
4
), pp.
541
565
.
8.
Maury
,
C.
,
Gardonio
,
P.
, and
Elliott
,
S.
,
2002
, “
A Wavenumber Approach to Modelling the Response of a Randomly Excited Panel—Part I: General Theory
,”
J. Sound Vib.
,
252
(
1
), pp.
83
113
.
9.
Maury
,
C.
,
Gardonio
,
P.
, and
Elliott
,
S.
,
2002
, “
A Wavenumber Approach to Modelling the Response of a Randomly Excited Panel—Part II: Application to Aircraft Panels Excited by a Turbulent Boundary Layer
,”
J. Sound Vib.
,
252
(
1
), pp.
115
139
.
10.
Liu
,
B.
,
2008
, “
Noise Radiation of Aircraft Panels Subjected to Boundary Layer Pressure Fluctuations
,”
J. Sound Vib.
,
314
(
3
), pp.
693
711
.
11.
Liu
,
B.
,
Feng
,
L.
,
Nilsson
,
A.
, and
Aversano
,
M.
,
2012
, “
Predicted and Measured Plate Velocities Induced by Turbulent Boundary Layers
,”
J. Sound Vib.
,
331
(
24
), pp.
5309
5325
.
12.
Tang
,
Y. Y.
,
Silcox
,
R. J.
, and
Robinson
,
J. H.
,
1996
, “Modeling of Sound Transmission Through Shell Structures With Turbulent Boundary Layer Excitation,” National Conference on Noise Control Engineering (
NOISE-CON
), Bellevue, WA, pp. 171–176.
13.
Rocha
,
J. D.
,
Suleman
,
A.
, and
Lau
,
F.
,
2011
, “
Flow-Induced Noise and Vibration in Aircraft Cylindrical Cabins: Closed-Form Analytical Model Validation
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051013
.
14.
Gardonio
,
P.
,
2013
, “
Boundary Layer Noise—Part 2: Interior Noise Radiation and Control
,”
Noise Sources in Turbulent Shear Flows: Fundamentals and Applications
,
R.
Camussi
, ed.,
Springer
,
Vienna, Austria
, pp.
379
448
.
15.
Durant
,
C.
,
Robert
,
G.
,
Filippi
,
P.
, and
Mattei
,
P.-O.
,
2000
, “
Vibroacoustic Response of a Thin Cylindrical Shell Excited by a Turbulent Internal Flow: Comparison Between Numerical Prediction and Experimentation
,”
J. Sound Vib.
,
229
(
5
), pp.
1115
1155
.
16.
Tang
,
Y.
,
Silcox
,
R.
, and
Robinson
,
J.
,
1996
, “
Sound Transmission Through Cylindrical Shell Structures Excited by Boundary Layer Pressure Fluctuations
,”
AIAA J.
,
96
, pp.
1760
1770
.
17.
Maury
,
C.
,
Gardonio
,
P.
, and
Elliott
,
S. J.
,
2002
, “
Model for Active Control of Flow-Induced Noise Transmitted Through Double Partitions
,”
AIAA J.
,
40
(
6
), pp.
1113
1121
.
18.
Zhou
,
J.
,
Bhaskar
,
A.
, and
Zhang
,
X.
,
2015
, “
Sound Transmission Through Double Cylindrical Shells Lined With Porous Material Under Turbulent Boundary Layer Excitation
,”
J. Sound Vib.
,
357
, pp.
253
268
.
19.
Zhou
,
J.
, and
Zhang
,
X.
,
2015
, “Interior Noise of Cylindrical Shell Lined With Porous Material Under Turbulent Boundary Layer Excitation,” 22nd International Congress on Sound and Vibration (
ICSV
), Florence, Italy, July 12–16, pp.
1
44
.
20.
Allard
,
J.
, and
Atalla
,
N.
,
2009
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
,
Wiley
,
Chichester, UK
.
21.
Mu
,
R. L.
,
Toyoda
,
M.
, and
Takahashi
,
D.
,
2011
, “
Sound Insulation Characteristics of Multi-Layer Structures With a Microperforated Panel
,”
Appl. Acoust.
,
72
(
11
), pp.
849
855
.
22.
Maa
,
D.-Y.
,
1975
, “
Theory and Design of Microperforated Panel Sound-Absorbing Constructions
,”
Sci. China Math.
,
18
(
1
), pp.
55
71
.
23.
Dupont
,
T.
,
Pavic
,
G.
, and
Laulagnet
,
B.
,
2003
, “
Acoustic Properties of Lightweight Micro-Perforated Plate Systems
,”
Acta Acust. Acust.
,
89
(
2
), pp.
201
212
.
24.
Toyoda
,
M.
, and
Takahashi
,
D.
,
2008
, “
Sound Transmission Through a Microperforated-Panel Structure With Subdivided Air Cavities
,”
J. Acoust. Soc. Am.
,
124
(
6
), pp.
3594
3603
.
25.
Putra
,
A.
,
Ismail
,
A. Y.
, and
Ayob
,
M. R.
,
2013
, “
Sound Transmission Loss of a Double-Leaf Partition With Micro-Perforated Plate Insertion Under Diffuse Field Incidence
,”
Int. J. Automot. Mech. Eng.
,
7
(7), p.
1086
.
26.
Putra
,
A.
,
Ismail
,
A. Y.
,
Ramlan
,
R.
,
Ayob
,
M. R.
, and
Py
,
M.
,
2013
, “
Normal Incidence of Sound Transmission Loss of a Double-Leaf Partition Inserted With a Microperforated Panel
,”
Adv. Acoust. Vib.
,
2013
, p. 216493.
27.
Bravo
,
T.
,
Maury
,
C.
, and
Pinhède
,
C.
,
2012
, “
Vibroacoustic Properties of Thin Micro-Perforated Panel Absorbers
,”
J. Acoust. Soc. Am.
,
132
(
2
), pp.
789
798
.
28.
Bravo
,
T.
,
Maury
,
C.
, and
Pinhède
,
C.
,
2012
, “
Sound Absorption and Transmission Through Flexible Micro-Perforated Panels Backed by an Air Layer and a Thin Plate
,”
J. Acoust. Soc. Am.
,
131
(
5
), pp.
3853
3863
.
29.
Bravo
,
T.
,
Maury
,
C.
, and
Pinhède
,
C.
,
2013
, “
Enhancing Sound Absorption and Transmission Through Flexible Multi-Layer Micro-Perforated Structures
,”
J. Acoust. Soc. Am.
,
134
(
5
), pp.
3663
3673
.
30.
Bravo
,
T.
,
Maury
,
C.
, and
Pinhède
,
C.
,
2014
, “
Optimising the Absorption and Transmission Properties of Aircraft Microperforated Panels
,”
Appl. Acoust.
,
79
, pp.
47
57
.
31.
Bravo
,
T.
,
Maury
,
C.
, and
Pinhède
,
C.
,
2016
, “
Reduction of Boundary Layer Noise With Micro-Perforated Partitions
,”
AIAA
Paper No. 2016-2748.
32.
Bravo
,
T.
,
Maury
,
C.
, and
Pinhède
,
C.
,
2017
, “
Absorption and Transmission of Boundary Layer Noise through Flexible Multi-Layer Micro-Perforated Structures
,”
J. Sound Vib.
,
395
, pp.
201
223
.
33.
Junger
,
M.
, and
Feit
,
D.
,
1986
,
Sound, Structures and Their Interaction
,
2nd ed.
,
MIT Press
,
Cambridge
, MA.
34.
Takahashi
,
D.
, and
Tanaka
,
M.
,
2002
, “
Flexural Vibration of Perforated Plates and Porous Elastic Materials Under Acoustic Loading
,”
J. Acoust. Soc. Am.
,
112
(
4
), pp.
1456
1464
.
35.
Corcos
,
G.
,
1963
, “
Resolution of Pressure in Turbulence
,”
J. Acoust. Soc. Am.
,
35
(
2
), pp.
192
199
.
36.
Efimtsov
,
B.
,
1982
, “
Characteristics of the Field of Turbulent Wall Pressure-Fluctuations at Large Reynolds-Numbers
,”
Sov. Phys. Acoust.
,
28
(
4
), pp.
289
292
.
37.
Schlichting
,
H.
, and
Gersten
,
K.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
38.
Bokde
,
A. L. W.
,
Lueptow
,
R. M.
, and
Abraham
,
B. M.
,
1999
, “
Spanwise Structure of Wall Pressure on a Cylinder in Axial Flow
,”
Phys. Fluids
,
11
(
1
), pp.
151
161
.
39.
Liu
,
Y.
, and
He
,
C.
,
2016
, “
Analytical Modelling of Acoustic Transmission across Double-Wall Sandwich Shells: Effect of an Air Gap Flow
,”
Composite Struct.
,
136
, pp.
149
161
.
40.
Zhou
,
J.
,
Bhaskar
,
A.
, and
Zhang
,
X.
,
2014
, “
The Effect of External Mean Flow on Sound Transmission Through Double-Walled Cylindrical Shells Lined With Poroelastic Material
,”
J. Sound Vib.
,
333
(7), pp.
1972
1990
.
41.
Robin
,
O.
,
Berry
,
A.
, and
Moreau
,
S.
,
2015
, “
Experimental Synthesis of Spatially-Correlated Pressure Fields for the Vibroacoustic Testing of Panels
,”
Flinovia—Flow Induced Noise and Vibration Issues and Aspects: A Focus on Measurement, Modeling, Simulation and Reproduction of the Flow Excitation and Flow Induced Response
,
E.
Ciappi
,
S.
De Rosa
,
F.
Franco
,
J.-L.
Guyader
, and
S. A.
Hambric
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
151
185
.
42.
Oliazadeh
,
P.
, and
Farshidianfar
,
A.
,
2017
, “
Analysis of Different Techniques to Improve Sound Transmission Loss in Cylindrical Shells
,”
J. Sound Vib.
,
389
, pp.
276
291
.
You do not currently have access to this content.