This study investigates the vibration of and power harvested by typical electromagnetic and piezoelectric vibration energy harvesters when applied to vibrating host systems that rotate at constant speed. The governing equations for these electromechanically coupled devices are derived using Newtonian mechanics and Kirchhoff's voltage law. The natural frequency for these devices is speed-dependent due to the centripetal acceleration from their constant rotation. Resonance diagrams are used to identify excitation frequencies and speeds where these energy harvesters have large amplitude vibration and power harvested. Closed-form solutions are derived for the steady-state response and power harvested. These devices have multifrequency dynamic response due to the combined vibration and rotation of the host system. Multiple resonances are possible. The average power harvested over one oscillation cycle is calculated for a wide range of operating conditions. Electromagnetic devices have a local maximum in average harvested power that occurs near a specific excitation frequency and rotation speed. Piezoelectric devices, depending on their mechanical damping, can have two local maxima of average power harvested. Although these maxima are sensitive to small changes in the excitation frequency, they are much less sensitive to small changes in rotation speed.

References

References
1.
Williams
,
C. B.
, and
Yates
,
R. B.
,
1996
, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators A
,
52
(
1–3
), pp.
8
11
.
2.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.
3.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.
4.
Yang
,
B.
,
Lee
,
C.
,
Xiang
,
W.
,
Xie
,
J.
,
He
,
J. H.
,
Kotlanka
,
R. K.
,
Low
,
S. P.
, and
Feng
,
H.
,
2009
, “
Electromagnetic Energy Harvesting From Vibrations of Multiple Frequencies
,”
J. Micromech. Microeng.
,
19
(
3
), p.
035001
.
5.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2010
, “
On the Performance and Resonant Frequency of Electromagnetic Induction Energy Harvesters
,”
J. Sound Vib.
,
329
(
9
), pp.
1348
1361
.
6.
Cammarano
,
A.
,
Burrow
,
S. G.
,
Barton
,
D. A. W.
,
Carrella
,
A.
, and
Clare
,
L. R.
,
2010
, “
Tuning a Resonant Energy Harvester Using a Generalized Electrical Load
,”
Smart Mater. Struct.
,
19
(
5
), p.
055003
.
7.
Mann
,
B. P.
, and
Owens
,
B. A.
,
2010
, “
Investigations of a Nonlinear Energy Harvester With a Bistable Potential Well
,”
J. Sound Vib.
,
329
(
9
), pp.
1215
1226
.
8.
Tang
,
X.
, and
Zuo
,
L.
,
2011
, “
Enhanced Vibration Energy Harvesting Using Dual-Mass Systems
,”
J. Sound Vib.
,
330
(
21
), pp.
5199
5209
.
9.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.
10.
Elvin
,
N. G.
, and
Elvin
,
A. A.
,
2011
, “
An Experimentally Validated Electromagnetic Energy Harvester
,”
J. Sound Vib.
,
330
(
10
), pp.
2314
2324
.
11.
Arafa
,
M. H.
,
2012
, “
Multi-Modal Vibration Energy Harvesting Using a Trapezoidal Plate
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041010
.
12.
Green
,
P. L.
,
Worden
,
K.
,
Atallah
,
K.
, and
Sims
,
N. D.
,
2012
, “
The Benefits of Duffing-Type Nonlinearities and Electrical Optimisation of a Mono-Stable Energy Harvester Under White Gaussian Excitations
,”
J. Sound Vib.
,
331
(
20
), pp.
4504
4517
.
13.
Green
,
P. L.
,
Worden
,
K.
, and
Sims
,
N. D.
,
2013
, “
On the Identification and Modelling of Friction in a Randomly Excited Energy Harvester
,”
J. Sound Vib.
,
332
(
19
), pp.
4696
4708
.
14.
Harne
,
R. L.
,
2013
, “
Modeling and Analysis of Distributed Electromagnetic Oscillators for Broadband Vibration Attenuation and Concurrent Energy Harvesting
,”
Appl. Math. Model.
,
37
(
6
), pp.
4360
4370
.
15.
Zuo
,
L.
, and
Cui
,
W.
,
2013
, “
Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051018
.
16.
He
,
Q.
, and
Daqaq
,
M. F.
,
2014
, “
Influence of Potential Function Asymmetries on the Performance of Nonlinear Energy Harvesters Under White Noise
,”
J. Sound Vib.
,
333
(
15
), pp.
3479
3489
.
17.
Ghandchi Tehrani
,
M.
, and
Elliott
,
S. J.
,
2014
, “
Extending the Dynamic Range of an Energy Harvester Using Nonlinear Damping
,”
J. Sound Vib.
,
333
(
3
), pp.
623
629
.
18.
Tang
,
X.
,
Liu
,
Y.
,
Cui
,
W.
, and
Zuo
,
L.
,
2015
, “
Analytical Solutions to H2 and H∞ Optimizations of Resonant Shunted Electromagnetic Tuned Mass Damper and Vibration Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011018
.
19.
He
,
Q.
, and
Daqaq
,
M. F.
,
2015
, “
New Insights Into Utilizing Bistability for Energy Harvesting Under White Noise
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021009
.
20.
Gonzalez-Buelga
,
A.
,
Clare
,
L. R.
,
Neild
,
S. A.
,
Burrow
,
S. G.
, and
Inman
,
D. J.
,
2015
, “
An Electromagnetic Vibration Absorber With Harvesting and Tuning Capabilities
,”
Struct. Control Health Monit.
,
22
(
11
), pp.
1359
1372
.
21.
Caruso
,
G.
,
2015
, “
Broadband Energy Harvesting From Vibrations Using Magnetic Transduction
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
064503
.
22.
Wang
,
X.
,
Liang
,
X.
, and
Wei
,
H.
,
2015
, “
A Study of Electromagnetic Vibration Energy Harvesters With Different Interface Circuits
,”
Mech. Syst. Signal Process.
,
58–59
,pp.
376
398
.
23.
duToit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.-G.
,
2005
, “
Design Considerations for Mems-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
,
71
(
1
), pp.
121
160
.
24.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2009
, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.
25.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
,
2009
, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
,
320
(
1–2
), pp.
386
405
.
26.
Seuaciuc-Osório
,
T.
, and
Daqaq
,
M. F.
,
2010
, “
Energy Harvesting Under Excitations of Time-Varying Frequency
,”
J. Sound Vib.
,
329
(
13
), pp.
2497
2515
.
27.
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
A Multiple-Degree-of-Freedom Piezoelectric Energy Harvesting Model
,”
J. Intell. Mater. Syst. Struct.
,
23
(
14
), pp.
1631
1647
.
28.
Xiao
,
H.
,
Wang
,
X.
, and
John
,
S.
,
2016
, “
A Multi-Degree of Freedom Piezoelectric Vibration Energy Harvester With Piezoelectric Elements Inserted Between Two Nearby Oscillators
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
138
154
.
29.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
30.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
.
31.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
,
2009
, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
011010
.
32.
Bonello
,
P.
, and
Rafique
,
S.
,
2010
, “
Modeling and Analysis of Piezoelectric Energy Harvesting Beams Using the Dynamic Stiffness and Analytical Modal Analysis Methods
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011009
.
33.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
,
292
(
3–5
), pp.
987
998
.
34.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
,
2009
, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure With an Application to UAVs
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
529
544
.
35.
Karami
,
M. A.
, and
Inman
,
D. J.
,
2011
, “
Electromechanical Modeling of the Low-Frequency Zigzag Micro-Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
22
(
3
), pp.
271
282
.
36.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2010
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.
37.
Cottone
,
F.
,
Gammaitoni
,
L.
,
Vocca
,
H.
,
Ferrari
,
M.
, and
Ferrari
,
V.
,
2012
, “
Piezoelectric Buckled Beams for Random Vibration Energy Harvesting
,”
Smart Mater. Struct.
,
21
(
3
), p.
035021
.
38.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2015
, “
Axial Suspension Compliance and Compression for Enhancing Performance of a Nonlinear Vibration Energy Harvesting Beam System
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011004
.
39.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003-2006)
,”
Smart Mater. Struct.
,
16
(
3
), p.
R1
.
40.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
41.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
42.
Yeatman
,
E. M.
,
2008
, “
Energy Harvesting From Motion Using Rotating and Gyroscopic Proof Masses
,”
Proc. Inst. Mech. Eng. Part C
,
222
(
1
), pp.
27
36
.
43.
Trimble
,
A. Z.
,
Lang
,
J. H.
,
Pabon
,
J.
, and
Slocum
,
A.
,
2010
, “
A Device for Harvesting Energy From Rotational Vibrations
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091001
.
44.
Gu
,
L.
, and
Livermore
,
C.
,
2010
, “
Passive Self-Tuning Energy Harvester for Extracting Energy From Rotational Motion
,”
Appl. Phys. Lett.
,
97
(
8
), p.
081904
.
45.
Khameneifar
,
F.
,
Moallem
,
M.
, and
Arzanpour
,
S.
,
2011
, “
Modeling and Analysis of a Piezoelectric Energy Scavenger for Rotary Motion Applications
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011005
.
46.
Gu
,
L.
, and
Livermore
,
C.
,
2012
, “
Compact Passively Self-Tuning Energy Harvesting for Rotating Applications
,”
Smart Mater. Struct.
,
21
(
1
), p.
015002
.
47.
Guan
,
M.
, and
Liao
,
W.-H.
,
2016
, “
Design and Analysis of a Piezoelectric Energy Harvester for Rotational Motion System
,”
Energy Convers. Manage.
,
111
, pp.
239
244
.
48.
Roundy
,
S.
, and
Tola
,
J.
,
2014
, “
Energy Harvester for Rotating Environments Using Offset Pendulum and Nonlinear Dynamics
,”
Smart Mater. Struct.
,
23
(
10
), p.
105004
.
You do not currently have access to this content.