The present study aims to investigate the steady-state response regimes of a device comprising a nonlinear energy sink (NES) and a giant magnetostrictive energy harvester utilizing analytical approximation. The complexification-averaging (CX-A) technique is generalized to systems defined by differential algebraic equations (DAEs). The amplitude-frequency responses are compared with numerical simulations for validation purposes. The tensile and compressive stresses of giant magnetostrictive material (GMM) are checked to ensure that the material functions properly. The energy harvested is calculated and the comparison of transmissibility of the apparatus with and without NES–GMM is exhibited to reveal the performance of vibration mitigation. Then, the stability and bifurcations are examined. The outcome demonstrates that the steady-state periodic solutions of the system undergo saddle-node (SN) bifurcation at a certain set of parameters. In the meantime, no Hopf bifurcation is observed. The introduction of NES and GMM for vibration reduction and energy harvesting brings about geometric nonlinearity and material nonlinearity. By computing both the responses of the primary system equipped with the NES only and the NES–GMM, it is indicated that the added GMM can dramatically modify the steady-state dynamics. A further optimization with respect to the cubic stiffness, the damper of NES, and the amplitude of excitation is conducted, respectively. The boundary where the giant magnetostrictive energy harvester is out of work is pointed out as well during the process of optimizing.

References

References
1.
Lefeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
,
Petit
,
L.
, and
Guyomar
,
D.
,
2006
, “
A Comparison Between Several Vibration-Powered Piezoelectric Generators for Standalone Systems
,”
Sens. Actuators, A
,
126
(
2
), pp.
405
416
.
2.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1
), pp.
409
425
.
3.
Chtiba
,
M. O.
,
Choura
,
S.
,
Nayfeh
,
A. H.
, and
El-Borgi
,
S.
,
2010
, “
Vibration Confinement and Energy Harvesting in Flexible Structures Using Collocated Absorbers and Piezoelectric Devices
,”
J. Sound Vib.
,
329
(
3
), pp.
261
276
.
4.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer Science & Business Media
, Dordrecht, The Netherlands, Chap. 6.
5.
Gourc
,
E.
,
Michon
,
G.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2015
, “
Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031008
.
6.
Li
,
T.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2016
, “
Dynamics of Cubic and Vibro-Impact Nonlinear Energy Sink: Analytical, Numerical, and Experimental Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031010
.
7.
Yang
,
K.
,
Zhang
,
Y.-W.
,
Ding
,
H.
,
Yang
,
T.-Z.
,
Li
,
Y.
, and
Chen
,
L.-Q.
,
2017
, “
Nonlinear Energy Sink for Whole-Spacecraft Vibration Reduction
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021011
.
8.
AL-Shudeifat
,
M. A.
,
2017
, “
Nonlinear Energy Sinks With Nontraditional Kinds of Nonlinear Restoring Forces
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
024503
.
9.
Al-Shudeifat
,
M. A.
,
2015
, “
Analytical Formulas for the Energy, Velocity and Displacement Decays of Purely Nonlinear Damped Oscillators
,”
J. Vib. Control
,
21
(
6
), pp.
1210
1219
.
10.
AL-Shudeifat
,
M. A.
,
2014
, “
Asymmetric Magnet-Based Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
014502
.
11.
AL-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2015
, “
Shock Mitigation by Means of Low- to High-Frequency Nonlinear Targeted Energy Transfers in a Large-Scale Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021006
.
12.
Al-Shudeifat
,
M. A.
,
2015
, “
Amplitudes Decay in Different Kinds of Nonlinear Oscillators
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031012
.
13.
AL-Shudeifat
,
M. A.
,
2017
, “
Time-Varying Stiffness Method for Extracting the Frequency–Energy Dependence in the Nonlinear Dynamical Systems
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1463
1474
.
14.
Kani
,
M.
,
Khadem
,
S. E.
,
Pashaei
,
M. H.
, and
Dardel
,
M.
,
2016
, “
Vibration Control of a Nonlinear Beam With a Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
1
22
.
15.
Dolatabadi
,
N.
,
Theodossiades
,
S.
, and
Rothberg
,
S. J.
,
2017
, “
Passive Control of Piston Secondary Motion Using Nonlinear Energy Absorbers
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051009
.
16.
Kremer
,
D.
, and
Liu
,
K.
,
2014
, “
A Nonlinear Energy Sink With an Energy Harvester: Transient Responses
,”
J. Sound Vib.
,
333
(
20
), pp.
4859
4880
.
17.
Nili Ahmadabadi
,
Z.
, and
Khadem
,
S. E.
,
2017
, “
Nonlinear Vibration Control and Energy Harvesting of a Beam Using a Nonlinear Energy Sink and a Piezoelectric Device
,”
J. Sound Vib.
,
333
(
19
), pp.
4444
4457
.
18.
Zhang
,
Y.
,
Tang
,
L.
, and
Liu
,
K.
,
2016
, “
Piezoelectric Energy Harvesting With a Nonlinear Energy Sink
,”
J. Intell. Mater. Syst. Struct.
,
28
(
3
), pp.
307
322
.
19.
Remick
,
K.
,
Dane Quinn
,
D.
,
Michael McFarland
,
D.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2016
, “
High-Frequency Vibration Energy Harvesting From Impulsive Excitation Utilizing Intentional Dynamic Instability Caused by Strong Nonlinearity
,”
J. Sound Vib.
,
370
, pp.
259
279
.
20.
Li
,
X.
,
Zhang
,
Y.
,
Ding
,
H.
, and
Chen
,
L.
,
2017
, “
Integration of a Nonlinear Energy Sink and a Piezoelectric Energy Harvester
,”
Appl. Math. Mech.
,
38
(
7
), pp.
1019
1030
.
21.
Zhang
,
Y.-W.
,
Wang
,
C.
,
Yuan
,
B.
, and
Fang
,
B.
,
2017
, “
Integration of Geometrical and Material Nonlinear Energy Sink With Piezoelectric Material Energy Harvester
,”
Shock Vib.
,
2017
, p.
1987456
.
22.
Fang
,
Z.-W.
,
Zhang
,
Y.-W.
,
Li
,
X.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Integration of a Nonlinear Energy Sink and a Giant Magnetostrictive Energy Harvester
,”
J. Sound Vib.
,
391
, pp.
35
49
.
23.
Manevitch
,
L. I.
,
2001
, “
The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables
,”
Nonlinear Dyn.
,
25
(
1–3
), pp.
95
109
.
24.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.
25.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M’Closkey
,
R.
,
2000
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
26.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2000
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
27.
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L.
,
Manevitch
,
L. I.
, and
Gendelman
,
O.
,
2004
, “
Isolated Resonance Captures and Resonance Capture Cascades Leading to Single- or Multi-Mode Passive Energy Pumping in Damped Coupled Oscillators
,”
ASME J. Vib. Acoust.
,
126
(
2
), pp.
235
244
.
28.
Manevitch
,
L. I.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2006
, “
Towards the Design of an Optimal Energetic Sink in a Strongly Inhomogeneous Two-Degree-of-Freedom System
,”
ASME J. Appl. Mech.
,
74
(
6
), pp.
1078
1086
.
29.
Gourdon
,
E.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Contribution to Efficiency of Irreversible Passive Energy Pumping With a Strong Nonlinear Attachment
,”
Nonlinear Dyn.
,
50
(
4
), pp.
793
808
.
30.
Bergeot
,
B.
,
Bellizzi
,
S.
, and
Cochelin
,
B.
,
2016
, “
Analysis of Steady-State Response Regimes of a Helicopter Ground Resonance Model Including a Non-Linear Energy Sink Attachment
,”
Int. J. Non-Linear Mech.
,
78
, pp.
72
89
.
31.
Tripathi
,
A.
,
Grover
,
P.
, and
Kalmár-Nagy
,
T.
,
2017
, “
On Optimal Performance of Nonlinear Energy Sinks in Multiple-Degree-of-Freedom Systems
,”
J. Sound Vib.
,
388
, pp.
272
297
.
32.
Jiang
,
X.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2003
, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
,
33
(
1
), pp.
87
102
.
33.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
D. M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Physics, D
,
204
(
1–2
), pp.
41
69
.
34.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
,
2006
, “
Suppression of Limit Cycle Oscillations in the van Der Pol Oscillator by Means of Passive Non-Linear Energy Sinks
,”
Struct. Control Health Monit.
,
13
(
1
), pp.
41
75
.
35.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2006
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
325
331
.
36.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2008
, “
Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry
,”
Physics, D
,
237
(
13
), pp.
1719
1733
.
37.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2009
, “
Vibration Absorption in Systems With a Nonlinear Energy Sink: Nonlinear Damping
,”
J. Sound Vib.
,
324
(
3–5
), pp.
916
939
.
38.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2010
, “
Interaction of Nonlinear Energy Sink With a Two Degrees of Freedom Linear System: Internal Resonance
,”
J. Sound Vib.
,
329
(
10
), pp.
1836
1852
.
39.
Sapsis
,
T. P.
,
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
Kerschen
,
G.
, and
Quinn
,
D. D.
,
2009
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures—Part II: Analytical Study
,”
J. Sound Vib.
,
325
(
1–2
), pp.
297
320
.
40.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially-Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1693
1704
.
41.
Malatkar
,
P.
, and
Nayfeh
,
A. H.
,
2007
, “
Steady-State Dynamics of a Linear Structure Weakly Coupled to an Essentially Nonlinear Oscillator
,”
Nonlinear Dyn.
,
47
(
1
), pp.
167
179
.
42.
Luongo
,
A.
, and
Zulli
,
D.
,
2012
, “
Dynamic Analysis of Externally Excited NES-Controlled Systems Via a Mixed Multiple Scale/Harmonic Balance Algorithm
,”
Nonlinear Dyn.
,
70
(
3
), pp.
2049
2061
.
43.
Luongo
,
A.
, and
Zulli
,
D.
,
2014
, “
Aeroelastic Instability Analysis of NES-Controlled Systems Via a Mixed Multiple Scale/Harmonic Balance Method
,”
J. Vib. Control
,
20
(
13
), pp.
1985
1998
.
44.
Zulli
,
D.
, and
Luongo
,
A.
,
2015
, “
Nonlinear Energy Sink to Control Vibrations of an Internally Nonresonant Elastic String
,”
Meccanica
,
50
(
3
), pp.
781
794
.
45.
Bab
,
S.
,
Khadem
,
S. E.
, and
Shahgholi
,
M.
,
2014
, “
Lateral Vibration Attenuation of a Rotor Under Mass Eccentricity Force Using Non-Linear Energy Sink
,”
Int. J. Non-Linear Mech.
,
67
, pp.
251
266
.
46.
Zang
,
J.
, and
Chen
,
L.-Q.
,
2017
, “
Complex Dynamics of a Harmonically Excited Structure Coupled With a Nonlinear Energy Sink
,”
Acta Mech. Sin.
,
33
(
4
), pp.
801
822
.
47.
Mayergoyz
,
I. D.
, and
Engdahl
,
G.
,
1999
,
Handbook of Giant Magnetostrictive Materials
, Academic Press, San Diego, CA, Chap. 1.
48.
Lu
,
Z.
,
Brennan
,
M. J.
, and
Chen
,
L.-Q.
,
2016
, “
On the Transmissibilities of Nonlinear Vibration Isolation System
,”
J. Sound Vib.
,
375
, pp.
28
37
.
49.
Deng
,
J.
,
Liu
,
Y.
,
Zhang
,
Z.
, and
Liu
,
W.
,
2017
, “
Size-Dependent Vibration and Stability of Multi-Span Viscoelastic Functionally Graded Material Nanopipes Conveying Fluid Using a Hybrid Method
,”
Compos. Struct.
,
179
, pp.
590
600
.
50.
Gendelman
,
O. V.
,
2011
, “
Targeted Energy Transfer in Systems With External and Self-Excitation
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
9
), pp.
2007
2043
.
You do not currently have access to this content.