Whirling (translational) and precession (tilt) motion of the shrouded centrifugal impeller are possible vibration sources that can cause rotordynamic instability problems. Whirling motion of shrouded impellers and seals has been investigated by test and theory in the literature. However, there has been little study of the effects of coupled motion of whirling and precession of a centrifugal impeller on rotordynamic forces and moments using computational fluid dynamics (CFD). In the present study, the CFD approach for calculating the moment coefficients of the precessing impeller is developed and verified by comparison with the measured data for a precessing centrifugal compressor by Yoshida et al. (1996, “Measurement of the Flow in the Backshroud/Casing Clearance of a Precessing Centrifugal Impeller,” Sixth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, Vol. 2, pp. 151–160). A full set (4 × 4) of rotordynamic coefficient matrices is calculated, using two separate models of (a) a precessing impeller with a tilt angle and (b) a whirling impeller with dynamic eccentricity to investigate the stability of the impeller. Rotordynamic stability is evaluated by using the whirl frequency ratio of the coupled motion, obtained from the full rotordynamic coefficient matrices, to show that the precession motion has a significant impact on rotordynamic stability. A similar conclusion is reached based on the whirling plus precession response of a finite element (FE) structural rotordynamic model including the 4 × 4 rotordynamic coefficient matrices. A stability analysis using the rotordynamic coefficients indicates that the precession motion with the positive tilt angle increases the tendency toward destabilization of the rotor.

References

References
1.
Jery
,
B.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1984
, “
Hydrodynamic Impeller Stiffness, Damping, and Inertia in the Rotordynamics of Centrifugal Flow Pumps
,”
Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery
, College Station, TX, May 28–30, pp.
137
160
.
2.
Bolleter
,
U.
,
Wyss
,
A.
,
Welte
,
I.
, and
Stürchler
,
R.
,
1987
, “
Measurement of Hydrodynamic Interaction Matrices of Boiler Feed Pump Impellers
,”
ASME J. Vib. Stress Reliab. Des.
,
109
(
2
), pp.
144
151
.
3.
Ohashi
,
H.
,
Sakuraki
,
A.
, and
Nishikoma
,
J.
,
1988
, “
Influence of Impeller and Diffuser Geometries on the Lateral Fluid Forces of Whirling Centrifugal Impeller
,”
Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery
, College Station, TX, May 16–18, pp.
285
306
.
4.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Ohashi
,
H.
,
Teramoto
,
N.
, and
Ishizaki
,
S.
,
1997
, “
Fluid Force Moment on a Centrifugal Impeller Shroud in Precessing Motion
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
366
371
.
5.
Yoshida
,
Y.
,
Saito
,
A.
,
Ishizaki
,
S.
, and
Tsujimoto
,
Y.
,
1996
, “
Measurements of the Flow in the Backshroud/Casing Clearance of a Precessing Centrifugal Impeller
,”
Sixth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
), Honolulu, HI, Feb. 25–29, pp.
151
160
.
6.
Fenwick
,
J.
,
DiJulio
,
R.
,
Ek
,
M. C.
,
Ehrgott
,
R.
,
Green
,
H.
, and
Shaolian
,
S.
,
1982
, “
Linear Force and Moment Equations for an Annular Smooth Shaft Seal Perturbed Both Angularly and Laterally
,”
Second Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery
, College Station, TX, May 10–12, pp.
130
146
.
7.
Kanemori
,
Y.
, and
Iwatsubo
,
T.
,
1994
, “
Forces and Moments Due to Combined Motion of Conical and Cylindrical Whirls for a Long Seal
,”
ASME J. Tribol.
,
116
(
3
), pp.
489
498
.
8.
Song
,
B.
,
Horiguchi
,
H.
,
Ma
,
Z.
, and
Tsujimoto
,
T.
,
2010
, “
Rotordynamic Instability Caused by the Fluid Force Moments on the Backshroud of a Francis Turbine Runner
,”
Int. J. Fluid Mach. Syst.
,
3
(
1
), pp.
67
79
.
9.
Tsujimoto
,
T.
,
Ma
,
Z.
,
Song
,
B.
, and
Horiguchi
,
H.
,
2010
, “
Moment Whirl Due to Leakage Flow in the Back Shroud Clearance of a Rotor
,”
Int. J. Fluid Mach. Syst.
,
3
(
3
), pp.
235
244
.
10.
Childs
,
D.
, and
Muhammed
,
A.
,
2013
, “
Comments on a Newly-Identified Destabilizing Rotordynamic Mechanism Arising in Vertical Hydraulic Turbines and the Back Shroud of Centrifugal Impellers
,”
ASME
Paper No. GT2013-94202.
11.
Childs
,
D.
,
1989
, “
Fluid-Structure Interaction Forces at Pump Impeller-Shroud Surfaces for Rotordynamic Calculations
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
111
(
3
), pp.
216
225
.
12.
Gupta
,
M. K.
, and
Childs
,
D.
,
2010
, “
Rotordynamic Stability Predictions for Centrifugal Compressors Using a Bulk-Flow Model to Predict Impeller Shroud Force and Moment Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
091402
.
13.
Baskharone
,
E. A.
,
Daniel
,
A. S.
, and
Hensel
,
S. J.
,
1994
, “
Rotordynamic Effects of the Shroud-to-Housing Leakage Flow in Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
558
563
.
14.
Moore
,
J. J.
, and
Palazzolo
,
A. B.
,
2001
, “
Rotordynamic Force Prediction of Whirling Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
910
918
.
15.
Kim
,
E.
, and
Palazzolo
,
A.
,
2016
, “
Rotordynamic Force Prediction of a Shrouded Centrifugal Pump Impeller—Part 1: Numerical Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031014
.
16.
Kim
,
E.
, and
Palazzolo
,
A.
,
2016
, “
Rotordynamic Force Prediction of a Shrouded Centrifugal Pump Impeller—Part 2: Stability Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031015
.
17.
Moore
,
J. J.
,
Ransom
,
D. L.
, and
Viana
,
F.
,
2010
, “
Rotordynamic Force Prediction of Centrifugal Compressor Impellers Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042504
.
18.
Moore
,
J. J.
, and
Ransom
,
D. L.
,
2009
, “
Centrifugal Compressor Stability Prediction Using a New Physics Based Approach
,”
ASME
Paper No. GT2009-60229.
19.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.
20.
ANSYS,
2010
, “
ANSYS CFX-Solver Theory Guide, RELEASE 13.0
,” ANSYS, Canonsburg, PA.
21.
Childs
,
D. W.
,
2013
,
Turbomachinery Rotordynamics With Case Studies
,
1st ed.
,
Minter Spring
, Wellborn, TX.
22.
Childs
,
D.
,
2016
, Personal Communication.
You do not currently have access to this content.