The internal debonding effects on implicit transient responses of the shear deformable layered composite plate under the mechanical transverse (uniform and sinusoidal) loading are analyzed in this article. The physics of the laminated composite plate with internal debonding has been expressed mathematically via two kinds of midplane displacement functions based on Reddy's simple shear deformation kinematic theory. The geometrical nonlinearity of the debonded plate structure is estimated using total Lagrangian method. The time–displacement characteristics are evaluated numerically using the nonlinear finite element method (FEM). The governing equation of motion of the debonded laminated structure has been derived using the total Lagrangian method and solved numerically with the help of Newmark's time integration scheme in association with the direct iterative method. For the computation of output, a suitable matlab program is written by the use of the presently developed higher order nonlinear model. The consistency and the accuracy of the proposed complex numerical solutions have been established through the appropriate convergence and the comparison study. Finally, a series of numerical examples have been examined to address the influence of the size, the position, and the location of internal damage along with the material and geometrical parameter (modular ratio, side to thickness ratio, aspect ratio, and the boundary condition) on the nonlinear transient responses of delaminated composite plate and discussed in detail.

References

References
1.
Mallikarjuna
, and
Kant
,
T.
,
1991
, “
Non-Linear Dynamics of Laminated Plates With a Higher-Order Theory and Co Finite Elements
,”
Int. J. Non-Linear Mech.
,
26
(
3–4
), pp.
335
343
.
2.
Chandrashekhara
,
K.
, and
Tenneti
,
R.
,
1994
, “
Non-Linear Static and Dynamic Analysis Heated Laminated Plates: A Finite Element Approach
,”
Compos. Sci. Technol.
,
51
(
1
), pp.
85
94
.
3.
Nath
,
Y.
, and
Shukla
,
K. K.
,
2001
, “
Non-Linear Transient Analysis of Moderately Thick Laminated Composite Plates
,”
J. Sound Vib.
,
247
(
3
), pp.
509
526
.
4.
Huang
,
X. L.
, and
Zheng
,
J. J.
,
2003
, “
Nonlinear Vibration and Dynamic Response of Simply Supported Shear Deformable Laminated Plates on Elastic Foundations
,”
Eng. Struct.
,
25
(
8
), pp.
1107
1119
.
5.
Ganapathi
,
M.
,
Patel
,
B. P.
, and
Makhecha
,
D. P.
,
2004
, “
Nonlinear Dynamic Analysis of Thick Composite/Sandwich Laminates Using an Accurate Higher-Order Theory
,”
Composites, Part B
,
35
(
4
), pp.
345
355
.
6.
Sharma
,
A.
,
Nath
,
Y.
, and
Sharda
,
H. B.
,
2007
, “
Nonlinear Transient Analysis of Moderately Thick Laminated Composite Sector Plates
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
6
), pp.
1101
1114
.
7.
Abdul-Razzak
,
A. A.
, and
Haido
,
J. H.
,
2007
, “
Free Vibration Analysis of Rectangular Plates Using Higher Order Finite Layer Method
,”
Al-Rafidain Eng.
,
15
(
3
), pp.
19
32
.
8.
Abdul-Razzak
,
A. A.
, and
Haido
,
J. H.
,
2007
, “
Forced Vibration Analysis of Rectangular Plates Using Higher Order Finite Layer Method
,”
Al-Rafidain Eng.
,
16
(
5
), pp.
43
56
.
9.
Haido
,
J. H.
,
Bakar
,
B. H. A.
,
Abdul-Razzak
,
A. A.
,
Jayaprakash
,
J.
, and
Choong
,
K. K.
,
2011
, “
Simulation of Dynamic Response for Steel Fibrous Concrete Members Using New Material Modeling
,”
Constr. Build. Mater.
,
25
(
3
), pp.
1407
1418
.
10.
Peng
,
J.
,
Yuan
,
Y.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2009
, “
A Semi-Analytic Approach for the Nonlinear Dynamic Response of Circular Plates
,”
Appl. Math. Modell.
,
33
(
12
), pp.
4303
4313
.
11.
Upadhyay
,
A. K.
,
Pandey
,
R.
, and
Shukla
,
K. K.
,
2011
, “
Nonlinear Dynamic Response of Laminated Composite Plates Subjected to Pulse Loading
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4530
4544
.
12.
Kerur
,
S. B.
, and
Ghosh
,
A.
,
2011
, “
Active Control of Geometrically Non-Linear Transient Response of Smart Laminated Composite Plate Integrated With AFC Actuator and PVDF Sensor
,”
J. Intell. Mater. Syst. Struct.
,
22
(
11
), pp.
1149
1160
.
13.
Tran
,
L. V.
,
Lee
,
J.
,
Nguyen-Van
,
H.
,
Nguyen-Xuan
,
H.
, and
Wahab
,
M. A.
,
2015
, “
Geometrically Nonlinear Isogeometric Analysis of Laminated Composite Plates Based on Higher-Order Shear Deformation Theory
,”
Int. J. Non-Linear Mech.
,
72
, pp.
42
52
.
14.
Choi
,
I. H.
,
2016
, “
Geometrically Nonlinear Transient Analysis of Composite Laminated Plate and Shells Subjected to Low-Velocity Impact
,”
Compos. Struct.
,
142
, pp.
7
14
.
15.
Haque
,
A. B. M. T.
,
Ghachi
,
R. F.
,
Alnahhal
,
W. I.
,
Aref
,
A.
, and
Shim
,
J.
,
2017
, “
Generalized Spatial Aliasing Solution for the Dispersion Analysis of Infinitely Periodic Multilayered Composites Using the Finite Element Method
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051010
.
16.
Rekatsinas
,
C. S.
, and
Saravanos
,
D. A.
,
2017
, “
A Hermite Spline Layerwise Time Domain Spectral Finite Element for Guided Wave Prediction in Laminated Composite and Sandwich Plates
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031009
.
17.
Ishak
,
S. I.
,
Liu
,
G. R.
,
Lim
,
S. P.
, and
Shang
,
H. M.
,
2001
, “
Characterization of Delamination in Beams Using Flexural Wave Scattering Analysis
,”
ASME J. Vib. Acoust.
,
123
(
4
), pp.
421
427
.
18.
Shiau
,
L.-C.
, and
Chen
,
Y.-S.
,
2001
, “
Effects of In-Plane Load on Flutter of Homogeneous Laminated Beam Plates With Delamination
,”
ASME J. Vib. Acoust.
,
123
(
1
), pp.
61
66
.
19.
Amraoui
,
M. Y.
, and
Lieven
,
N. A. J.
,
2004
, “
Laser Vibrometry Based Detection of Delaminations in Glass/Epoxy Composites
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
430
437
.
20.
Ghoshal
,
A.
,
Chattopadhyay
,
A.
, and
Kim
,
H. S.
,
2003
, “
Delamination Effect on Transient History of Smart Composite Plates
,”
AIAA
Paper No. 2003-1567.
21.
Nanda
,
N.
,
Sahu
,
S. K.
, and
Bandyopadhyay
,
J. N.
,
2010
, “
Effect of Delamination on the Nonlinear Transient Response of Composite Shells in Hygrothermal Environments
,”
Int. J. Struct. Integr.
,
1
(
3
), pp.
259
279
.
22.
Dey
,
S.
, and
Karmakar
,
A.
,
2012
, “
Natural Frequencies of Delaminated Composite Rotating Conical Shells—A Finite Element Approach
,”
Finite Elem. Anal. Des.
,
56
, pp.
41
51
.
23.
Casanova
,
C. F.
,
Gallego
,
A.
, and
Lázaro
,
M.
,
2013
, “
On the Accuracy of a Four-Node Delaminated Composite Plate Element and Its Application to Damage Detection
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
061003
.
24.
Marjanović
,
M.
,
Vuksanovic
,
D.
, and
Meschke
,
G.
,
2015
, “
Geometrically Nonlinear Transient Analysis of Delaminated Composite and Sandwich Plates Using a Layerwise Displacement Model With Contact Conditions
,”
Compos. Struct.
,
122
, pp.
67
81
.
25.
Szekrényes
,
A.
,
2015
, “
Natural Vibration-Induced Parametric Excitation in Delaminated Kirchhoff Plates
,”
J. Compos. Mater.
,
50
(
17
), pp.
2337
2364
.
26.
Szekrényes
,
A.
,
2016
, “
Semi-Layerwise Analysis of Laminated Plates With Nonsingular Delamination—The Theorem of Autocontinuity
,”
Appl. Math. Modell.
,
40
(
2
), pp.
1344
1371
.
27.
Hirwani
,
C. K.
,
Panda
,
S. K.
,
Mahapatra
,
S. S.
,
Mandal
,
S. K.
,
Srivastava
,
L.
, and
Buragohain
,
M. K.
,
2016
, “
Flexural Strength of Delaminated Composite Plate—An Experimental Validation
,”
Int. J. Damage Mech.
, epub.
28.
Sahoo
,
S. S.
,
Panda
,
S. K.
, and
Sen
,
D.
,
2016
, “
Effect of Delamination on Static and Dynamic Behavior of Laminated Composite Plate
,”
AIAA J.
,
54
(
8
), pp.
2530
2544
.
29.
Reddy
,
J. N.
, and
Liu
,
C. F.
,
1985
, “
A Higher-Order Shear Deformation Theory of Laminated Elastic Shells
,”
Int. J. Eng. Sci.
,
23
(
3
), pp.
319
330
.
30.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
31.
Singh
,
V. K.
, and
Panda
,
S. K.
,
2014
, “
Nonlinear Free Vibration Analysis of Single/Doubly Curved Composite Shallow Shell Panels
,”
Thin Walled Struct.
,
85
, pp.
341
349
.
32.
Mahapatra
,
T. R.
, and
Panda
,
S. K.
,
2015
, “
Thermoelastic Vibration Analysis of Laminated Doubly Curved Shallow Panels Using Non-Linear FEM
,”
J. Therm. Stresses
,
38
(
1
), pp.
39
68
.
33.
Jones
,
R. M.
,
1975
,
Mechanics of Composite Materials
,
Taylor and Francis
,
Philadelphia, PA
.
34.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
,
2000
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
Singapore
.
35.
Ju
,
F.
,
Lee
,
H. P.
, and
Lee
,
K. H.
,
1995
, “
Finite Element Analysis of Free Vibration of Delaminated Composite Plates
,”
Compos. Eng.
,
5
(
2
), pp.
195
209
.
36.
Hirwani
,
C. K.
,
Patil
,
R. K.
,
Panda
,
S. K.
,
Mahapatra
,
S. S.
,
Mandal
,
S. K.
,
Srivastava
,
L.
, and
Buragohain
,
M. K.
,
2016
, “
Experimental and Numerical Analysis of Free Vibration of Delaminated Curved Panel
,”
Aerosp. Sci. Technol.
,
54
, pp.
353
370
.
37.
Bathe
,
K. J.
,
Ram
,
E.
, and
Wilso
,
E. L.
,
1975
, “
Finite-Element Formulations for Large Deformation Dynamic Analysis
,”
Int. J. Numer. Method Eng.
,
9
(
2
), pp.
353
386
.
38.
Bathe
,
K. J.
,
1982
,
Finite Element Procedure in Engineering Analysis
,
Prentice Hall
,
Upper Saddle River, NJ
.
39.
Maleki
,
S.
,
Tahani
,
M.
, and
Andakhshideh
,
A.
,
2012
, “
Transient Response of Laminated Plates With Arbitrary Laminations and Boundary Conditions Under General Dynamic Loadings
,”
Arch. Appl. Mech.
,
82
(
5
), pp.
615
630
.
40.
Chen
,
J.
,
Dawe
,
D. J.
, and
Wang
,
S.
,
2000
, “
Nonlinear Transient Analysis of Rectangular Composite Laminated Plates
,”
Compos. Struct.
,
49
(
2
), pp.
129
139
.
41.
Parhi
,
P. K.
,
Bhattacharyya
,
S. K.
, and
Sinha
,
P. K.
,
2000
, “
Finite Element Dynamic Analysis of Laminated Composite Plates With Multiple Delaminations
,”
J. Reinf. Plast. Compos.
,
19
(
11
), pp.
863
882
.
You do not currently have access to this content.