Fast time-varying (FTV) phenomena, such as significant speed changes, FTV stiffness, and vibration signals with fast-oscillated instantaneous frequency (IF), carry critical fault information of high-speed rotating machines. However, the mechanism of FTV phenomenon remains unclear, and conventional methods cannot characterize the FTV features. In this study, the FTV vibration mechanism for rotor–stator contact systems is first revealed, and then, a novel fast-modulation-based rub-impact detection method (FRiDM) is significantly developed to extract the FTV features and thus promote the effectiveness of rub-impact diagnosis. The FTV vibration mechanism indicates that the fast-oscillated modulation of the vibration signal is the physical property, and the fast oscillation of IF is the mathematical nature. By theoretical and experimental study, it is demonstrated that the FTV features of the rotor–stator contact system are periodic for the periodic motion but aperiodic for the quasi-periodic and chaotic motions. Finally, the validity of the proposed FTV vibration mechanism and FRiDM is verified by the application to the rub-impact diagnosis of a bearing life testing rig and a dual-rotor turbine engine. The study results provide a potential way to nonlinear behavior identification and fault localization of sophisticated rotor systems.

References

References
1.
Host
,
P.
,
2014
, “
F-35a Suffers ‘Significant Fire' Prior to Liftoff
,”
Defense Daily, Arlington, VA
.
2.
Ehrich
,
F. F.
,
1988
, “
High Order Subharmonic Response of High Speed Rotors in Bearing Clearance
,”
ASME J. Vib. Acoust.
,
110
(
1
), pp.
9
16
.
3.
Muszynska
,
A.
,
Franklin
,
W. D.
, and
Hayashida
,
R. D.
,
1991
, “
Rotor-to-Stator Partial Rubbing and Its Effects on Rotor Dynamic Response
,” NASA, Lewis Research Center, Bently Rotor Dynamics Research Corp., Minden, NV, Report No.
92N14367
.
4.
Bently
,
D. E.
, and
Hatch
,
C. T.
,
2002
,
Fundamentals of Rotating Machinery Diagnostics
,
American Society of Mechanical Engineers
, New York.
5.
von Groll
,
G.
, and
Ewins
,
D. J.
,
2002
, “
A Mechanism of Low Subharmonic Response in Rotor/Stator Contact-Measurements and Simulations
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
350
358
.
6.
Muszynska
,
A.
,
2005
,
Rotordynamics
,
CRC Press
, Boca Raton, FL.
7.
Jacquet-Richardet
,
G.
,
Torkhani
,
M.
,
Cartraud
,
P.
,
Thouverez
,
F.
,
Nouri Baranger
,
T.
,
Herran
,
M.
,
Gibert
,
C.
,
Baguet
,
S.
,
Almeida
,
P.
, and
Peletan
,
L.
,
2013
, “
Rotor to Stator Contacts in Turbomachines. Review and Application
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
401
420
.
8.
Chu
,
F.
, and
Zhang
,
Z.
,
1997
, “
Periodic, Quasi-Periodic and Chaotic Vibrations of a rub-Impact Rotor System Supported on Oil Film Bearings
,”
Int. J. Eng. Sci.
,
35
(
10
), pp.
963
973
.
9.
Chu
,
F.
, and
Lu
,
W.
,
2005
, “
Experimental Observation of Nonlinear Vibrations in a Rub-Impact Rotor System
,”
J. Sound Vib.
,
283
(3–5), pp.
621
643
.
10.
Cao
,
J.
,
Ma
,
C.
,
Jiang
,
Z.
, and
Liu
,
S.
,
2011
, “
Nonlinear Dynamic Analysis of Fractional Order Rub-Impact Rotor System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1443
1463
.
11.
Chen
,
Y.
, and
Jiang
,
J.
,
2015
, “
Effects of Forward/Backward Whirl Mechanism on Nonlinear Normal Modes of a Rotor/Stator Rubbing System
,”
ASME J. Vib. Acoust.
,
137
(
5
), p.
054503
.
12.
Lahriri
,
S.
, and
Santos
,
I. F.
,
2013
, “
Theoretical Modelling, Analysis and Validation of the Shaft Motion and Dynamic Forces During Rotor-Stator Contact
,”
J. Sound Vib.
,
332
(
24
), pp.
6359
6376
.
13.
Ma
,
H.
,
Shi
,
C. Y.
,
Han
,
Q. K.
, and
Wen
,
B. C.
,
2013
, “
Fixed-Point Rubbing Fault Characteristic Analysis of a Rotor System Based on Contact Theory
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
137
153
.
14.
Varney
,
P.
, and
Green
,
I.
,
2016
, “
Rotordynamic Analysis of Rotor-Stator Rub Using Rough Surface Contact
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021015
.
15.
Yang
,
Y.
,
Cao
,
D.
, and
Wang
,
D.
,
2017
, “
Investigation of Dynamic Characteristics of a Rotor System With Surface Coatings
,”
Mech. Syst. Signal Process.
,
84
(Pt. A), pp.
469
484
.
16.
Worden
,
K.
, and
Tomlinson
,
G. R.
,
2000
,
Nonlinearity in Structural Dynamics: Detection, Identification and Modelling
,
CRC Press
, Boca Raton, FL.
17.
Chandra
,
N. H.
, and
Sekhar
,
A. S.
,
2016
, “
Fault Detection in Rotor Bearing Systems Using Time Frequency Techniques
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
105
133
.
18.
He
,
Y.
,
Yin
,
X.
, and
Chu
,
F.
,
2008
, “
Modal Analysis of Rubbing Acoustic Emission for Rotor-Bearing System Based on Reassigned Wavelet Scalogram
,”
ASME J. Vib. Acoust.
,
130
(
6
), p.
061009
.
19.
Peng
,
Z.
,
Chu
,
F.
, and
He
,
Y.
,
2002
, “
Vibration Signal Analysis and Feature Extraction Based on Reassigned Wavelet Scalogram
,”
J. Sound Vib.
,
253
(
5
), pp.
1087
1100
.
20.
Cheng
,
J.
,
Yu
,
D.
,
Tang
,
J.
, and
Yang
,
Y.
,
2009
, “
Local Rub-Impact Fault Diagnosis of the Rotor Systems Based on EMD
,”
Mech. Mach. Theory
,
44
(
4
), pp.
784
791
.
21.
Li
,
H.
,
Li
,
M.
,
Li
,
C.
,
Li
,
F.
, and
Meng
,
G.
,
2017
, “
Multi-Faults Decoupling on Turbo-Expander Using Differential-Based Ensemble Empirical Mode Decomposition
,”
Mech. Syst. Signal Process.
,
93
, pp.
267
280
.
22.
Wang
,
S.
,
Yang
,
L.
,
Chen
,
X.
,
Tong
,
C.
,
Ding
,
B.
, and
Xiang
,
J.
,
2017
, “
Nonlinear Squeezing Time-Frequency Transform and Application in Rotor rub-Impact Fault Diagnosis
,”
ASME J. Manuf. Sci. Eng.
,
139
(10), p. 101005.
23.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2010
,
Applied Nonlinear Dynamics
,
Wiley
, Hoboken, NJ.
24.
Yang
,
L.
,
Chen
,
X.
,
Wang
,
S.
, and
Zuo
,
H.
,
2016
, “
Rub-Impact Detection of Rotor Systems Using Time-Frequency Techniques
,”
ASME
Paper No. IMECE2016-65412.
25.
Wang
,
S.
,
Chen
,
X.
,
Wang
,
Y.
,
Cai
,
G.
,
Ding
,
B.
, and
Zhang
,
X.
,
2015
, “
Nonlinear Squeezing Time-Frequency Transform for Weak Signal Detection
,”
Signal Process.
,
113
, pp.
195
210
.
26.
Wang
,
S.
,
Chen
,
X.
,
Cai
,
G.
,
Chen
,
B.
,
Li
,
X.
, and
He
,
Z.
,
2014
, “
Matching Demodulation Transform and Synchrosqueezing in Time-Frequency Analysis
,”
IEEE Trans. Signal Process.
,
62
(
1
), pp.
69
84
.
27.
Wang
,
S.
,
Chen
,
X.
,
Li
,
G.
,
Li
,
X.
, and
He
,
Z.
,
2014
, “
Matching Demodulation Transform With Application to Feature Extraction of Rotor Rub-Impact Fault
,”
IEEE Trans. Instrum. Meas.
,
63
(
5
), pp.
1372
1383
.
28.
Wang
,
S.
,
Chen
,
X.
,
Tong
,
C.
, and
Zhao
,
Z.
,
2017
, “
Matching Synchrosqueezing Wavelet Transform and Application to Aeroengine Vibration Monitoring
,”
IEEE Trans. Instrum. Meas.
,
66
(
2
), pp.
360
372
.
29.
Kantz
,
H.
, and
Schreiber
,
T.
,
2005
,
Nonlinear Time Series Analysis
, Cambridge University Press, New York.
You do not currently have access to this content.