An accurate and robust geometrically exact beam formulation (GEBF) is developed to simulate the dynamics of a beam with large deformations and large rotations. The undeformed configuration of the centroid line of the beam can be either straight or curved, and cross sections of the beam can be either uniform or nonuniform with arbitrary shapes. The beam is described by the position of the centroid line and a local frame of a cross section, and a rotation vector is used to characterize the rotation of the cross section. The elastic potential energy of the beam is derived using continuum mechanics with the small-strain assumption and linear constitutive relation, and a factor naturally arises in the elastic potential energy, which can resolve a drawback of the traditional GEBF. Shape functions of the position vector and rotation vector are carefully chosen, and numerical incompatibility due to independent discretization of the position vector and rotation vector is resolved, which can avoid the shear locking problem. Numerical singularity of the rotation vector with its norm equal to zero is eliminated by Taylor polynomials. A rescaling strategy is adopted to resolve the singularity problem with its norm equal to 2mπ, where m is a nonzero integer. The current formulation can be used to handle linear and nonlinear dynamics of beams under arbitrary concentrated and distributed loads. Several benchmark problems are simulated using the current formulation to validate its accuracy, adaptiveness, and robustness.

References

References
1.
Zhu
,
W. D.
,
Ren
,
H.
, and
Xiao
,
C.
,
2011
, “
A Nonlinear Model of a Slack Cable With Bending Stiffness and Moving Ends With Application to Elevator Traveling and Compensation Cables
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041017
.
2.
Zhu
,
W. D.
,
Fan
,
W.
,
Mao
,
Y. G.
, and
Ren
,
G. X.
,
2017
, “
Three-Dimensional Dynamic Modeling and Analysis of Moving Elevator Traveling Cables
,”
Proc. Inst. Mech. Eng., Part K
,
231
(
1
), pp.
167
180
.
3.
Love
,
A. E. H.
,
2013
,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge, UK
.
4.
Antman
,
S. S.
,
1995
,
Nonlinear Problems of Elasticity
,
Springer
,
New York
.
5.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
,
2005
, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
,
209
(
1
), pp.
371
389
.
6.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem. Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.
7.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
8.
Zhao
,
Z. H.
, and
Ren
,
G. X.
,
2012
, “
A Quaternion-Based Formulation of Euler–Bernoulli Beam Without Singularity
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1825
1835
.
9.
Fan
,
W.
,
Zhu
,
W. D.
, and
Ren
,
H.
,
2016
, “
A New Singularity-Free Formulation of a Three-Dimensional Euler–Bernoulli Beam Using Euler Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041013
.
10.
Fan
,
W.
, and
Zhu
,
W. D.
,
2016
, “
An Accurate Singularity-Free Formulation of a Three-Dimensional Curved Euler–Bernoulli Beam for Flexible Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051001
.
11.
Ibrahimbegović
,
A.
,
Frey
,
F.
, and
Kožar
,
I.
,
1995
, “
Computational Aspects of Vector-Like Parametrization of Three-Dimensional Finite Rotations
,”
Int. J. Numer. Methods Eng.
,
38
(
21
), pp.
3653
3673
.
12.
Zhang
,
Z. G.
,
Qi
,
Z. H.
,
Wu
,
Z. G.
, and
Fang
,
H. Q.
,
2015
, “
A Spatial Euler-Bernoulli Beam Element for Rigid-Flexible Coupling Dynamic Analysis of Flexible Structures
,”
Shock Vib.
,
2015
, p.
208127
.
13.
Jelenić
,
G.
, and
Crisfield
,
M.
,
1999
, “
Geometrically Exact 3D Beam Theory: Implementation of a Strain-Invariant Finite Element for Statics and Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
1–2
), pp.
141
171
.
14.
Borst
,
R. D.
,
Crisfield
,
M. A.
,
Remmers
,
J. J. C.
, and
Verhoosel
,
C. V.
,
2012
,
Nonlinear Finite Element Analysis of Solids and Structures
,
Wiley
,
New York
.
15.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K.
,
2013
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
16.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.
17.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
.
18.
Shabana
,
A. A.
,
2015
, “
Definition of ANCF Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054506
.
19.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(
1–2
), pp.
53
74
.
20.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2007
, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates
,”
Proc. Inst. Mech. Eng., Part K
,
221
(
2
), pp.
219
231
.
21.
Ren
,
H.
,
2015
, “
A Simple Absolute Nodal Coordinate Formulation for Thin Beams With Large Deformations and Large Rotations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061005
.
22.
Schwab
,
A.
, and
Meijaard
,
J.
,
2010
, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Classical Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011010
.
23.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.
24.
Bauchau
,
O. A.
,
Han
,
S.
,
Mikkola
,
A.
, and
Matikainen
,
M. K.
,
2014
, “
Comparison of the Absolute Nodal Coordinate and Geometrically Exact Formulations for Beams
,”
Multibody Syst. Dyn.
,
32
(
1
), pp.
67
85
.
25.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1996
,
Matrix Computation
,
The Johns Hopkins University Press
,
Baltimore, MD
.
26.
Green
,
A. E.
, and
Zerna
,
W.
,
1963
,
Theoretical Elasticity
,
Clarendon Press
,
Oxford, UK
.
27.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2000
, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
498
507
.
28.
Fan
,
W.
, and
Zhu
,
W. D.
,
2017
, “
A New Locking-Free Formulation of a Three-Dimensional Shear-Deformable Beam
,”
ASME J. Vib. Acoustics
,
139
(
5
), p.
051001
.
29.
Blevins
,
R.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
Kreiger Publishing
,
Malabar, FL
.
30.
Kirkhope
,
J.
,
1976
, “
Out-of-Plane Vibration of Thick Circular Ring
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
239
247
.
31.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.
You do not currently have access to this content.