Due to its long-span structure and large flexibility, an electrified railway catenary is very sensitive to environmental wind load, especially the time-varying stochastic wind, which may lead to a strong forced vibration of contact line and deteriorate the current collection quality of the pantograph–catenary system. In this paper, in order to study the wind-induced vibration behavior of railway catenary, a nonlinear finite element procedure is implemented to construct the model of catenary, which can properly describe the large nonlinear deformation and the nonsmooth nonlinearity of dropper. The spatial stochastic wind field is developed considering the fluctuating winds in along-wind, vertical-wind, and cross-wind directions. Using the empirical spectra suggested by Kaimal, Panofsky, and Tieleman, the fluctuating wind velocities in three directions are generated considering the temporal and spatial correlations. Based on fluid-induced vibration theory, the model of fluctuating forces acting on catenary are developed considering the spatial characteristics of catenary. The time- and frequency-domain analyses are conducted to study the wind-induced vibration behavior with different angles of wind deflection, different angles of attack, as well as different geometries of catenary. The effect of spatial wind load on contact force of pantograph–catenary system is also investigated.

References

References
1.
Jung
,
S. P.
,
Kim
,
Y. G.
,
Paik
,
J. S.
, and
Park
,
T. W.
,
2012
, “
Estimation of Dynamic Contact Force Between a Pantograph and Catenary Using the Finite Element Method
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041006
.
2.
Lopez-Garcia
,
O.
,
Carnicero
,
A.
, and
Maroño
,
J. L.
,
2007
, “
Influence of Stiffness and Contact Modelling on Catenary–Pantograph System Dynamics
,”
J. Sound Vib.
,
299
(
4
), pp.
806
821
.
3.
Pombo
,
J.
, and
Ambrósio
,
J.
,
2012
, “
Influence of Pantograph Suspension Characteristics on the Contact Quality With the Catenary for High Speed Trains
,”
Comput. Struct.
,
110–111
, pp.
32
42
.
4.
Rønnquist
,
A.
, and
Nåvik
,
P.
,
2015
, “
Dynamic Assessment of Existing Soft Catenary Systems Using Modal Analysis to Explore Higher Train Velocities: A Case Study of a Norwegian Contact Line System
,”
Veh. Syst. Dyn.
,
53
(
6
), pp.
756
774
.
5.
Nåvik
,
P.
,
Rønnquist
,
A.
, and
Stichel
,
S.
,
2016
, “
The Use of Dynamic Response to Evaluate and Improve the Optimization of Existing Soft Railway Catenary Systems for Higher Speeds
,”
Proc. Inst. Mech. Eng., Part F
,
230
(
4
), pp.
1388
1396
.
6.
Massat
,
J. P.
,
Laurent
,
C.
,
Bianchi
,
J. P.
, and
Balmès
,
E.
,
2014
, “
Pantograph Catenary Dynamic Optimisation Based on Advanced Multibody and Finite Element Co-Simulation Tools
,”
Veh. Syst. Dyn.
,
52
(
Suppl. 1
), pp.
338
354
.
7.
Kim
,
J. W.
,
Chae
,
H. C.
,
Park
,
B. S.
,
Lee
,
S. Y.
,
Han
,
C. S.
, and
Jang
,
J. H.
,
2007
, “
State Sensitivity Analysis of the Pantograph System for a High-Speed Rail Vehicle Considering Span Length and Static Uplift Force
,”
J. Sound Vib.
,
303
(
3
), pp.
405
427
.
8.
Schirrer
,
A.
,
Aschauer
,
G.
,
Talic
,
E.
,
Kozek
,
M.
, and
Jakubek
,
S.
,
2017
, “
Catenary Emulation for Hardware-in-the-Loop Pantograph Testing With a Model Predictive Energy-Conserving Control Algorithm
,”
Mechatronics
,
41
, pp.
17
28
.
9.
Bruni
,
S.
,
Bucca
,
G.
,
Collina
,
A.
, and
Facchinetti
,
A.
,
2012
, “
Numerical and Hardware-in-the-Loop Tools for the Design of Very High Speed Pantograph-Catenary Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041013
.
10.
Facchinetti
,
A.
,
Gasparetto
,
L.
, and
Bruni
,
S.
,
2013
, “
Real-Time Catenary Models for the Hardware-in-the-Loop Simulation of the Pantograph–Catenary Interaction
,”
Veh. Syst. Dyn.
,
51
(
4
), pp.
499
516
.
11.
Lee
,
J. H.
,
Park
,
T. W.
,
Oh
,
H. K.
, and
Kim
,
Y. G.
,
2015
, “
Analysis of Dynamic Interaction Between Catenary and Pantograph With Experimental Verification and Performance Evaluation in New High-Speed Line
,”
Veh. Syst. Dyn.
,
53
(
8
), pp.
1117
1134
.
12.
Nåvik
,
P.
,
Rønnquist
,
A.
, and
Stichel
,
S.
,
2016
, “
Identification of System Damping in Railway Catenary Wire Systems From Full-Scale Measurements
,”
Eng. Struct.
,
113
, pp.
71
78
.
13.
Carnicero
,
A.
,
Jimenez-Octavio
,
J. R.
,
Sanchez-Rebollo
,
C.
,
Ramos
,
A.
, and
Such
,
M.
,
2012
, “
Influence of Track Irregularities in the Catenary-Pantograph Dynamic Interaction
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041015
.
14.
Pombo
,
J.
, and
Ambrósio
,
J.
,
2013
, “
Environmental and Track Perturbations on Multiple Pantograph Interaction With Catenaries in High-Speed Trains
,”
Comput. Struct.
,
124
, pp.
88
101
.
15.
Qian
,
W. J.
,
Chen
,
G. X.
,
Zhang
,
W. H.
,
Ouyang
,
H.
, and
Zhou
,
Z. R.
,
2013
, “
Friction-Induced, Self-Excited Vibration of a Pantograph-Catenary System
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051021
.
16.
Kulkarni
,
S.
,
Pappalardo
,
C. M.
, and
Shabana
,
A. A.
,
2016
, “
Pantograph/Catenary Contact Formulations
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011010
.
17.
Vo Van
,
O.
,
Massat
,
J. P.
,
Laurent
,
C.
, and
Balmes
,
E.
,
2014
, “
Introduction of Variability Into Pantograph–Catenary Dynamic Simulations
,”
Veh. Syst. Dyn.
,
52
(
10
), pp.
1254
1269
.
18.
Wang
,
H.
,
Liu
,
Z.
,
Song
,
Y.
,
Lu
,
X.
,
Han
,
Z.
,
Zhang
,
J.
, and
Wang
,
Y.
,
2016
, “
Detection of Contact Wire Irregularities Using a Quadratic Time–Frequency Representation of the Pantograph–Catenary Contact Force
,”
IEEE Trans. Instrum. Meas.
,
65
(
6
), pp.
1385
1397
.
19.
Pombo
,
J.
, and
Ambrósio
,
J.
,
2012
, “
Multiple Pantograph Interaction With Catenaries in High-Speed Trains
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041008
.
20.
Liu
,
Z.
,
Jönsson
,
P. A.
,
Stichel
,
S.
, and
Rønnquist
,
A.
,
2016
, “
On the Implementation of an Auxiliary Pantograph for Speed Increase on Existing Lines
,”
Veh. Syst. Dyn.
,
54
(
8
), pp.
1077
1097
.
21.
Song
,
Y.
,
Liu
,
Z.
,
Wang
,
H.
,
Lu
,
X.
, and
Zhang
,
J.
,
2015
, “
Nonlinear Modelling of High-Speed Catenary Based on Analytical Expressions of Cable and Truss Elements
,”
Veh. Syst. Dyn.
,
53
(
10
), pp.
1455
1479
.
22.
Tur
,
M.
,
García
,
E.
,
Baeza
,
L.
, and
Fuenmayor
,
F. J.
,
2014
, “
A 3D Absolute Nodal Coordinate Finite Element Model to Compute the Initial Configuration of a Railway Catenary
,”
Eng. Struct.
,
71
, pp.
234
243
.
23.
Gregori
,
S.
,
Tur
,
M.
,
Nadal
,
E.
,
Fuenmayor
,
F. J.
, and
Chinesta
,
F.
,
2016
, “
Parametric Model for the Simulation of the Railway Catenary System Static Equilibrium Problem
,”
Finite Elem. Anal. Des.
,
115
, pp.
21
32
.
24.
Jimenez-Octavio
,
J. R.
,
Carnicero
,
A.
,
Sanchez-Rebollo
,
C.
, and
Such
,
M.
,
2015
, “
A Moving Mesh Method to Deal With Cable Structures Subjected to Moving Loads and Its Application to the Catenary–Pantograph Dynamic Interaction
,”
J. Sound Vib.
,
349
, pp.
216
229
.
25.
Oumri
,
M.
, and
Rachid
,
A.
,
2016
, “
A Mathematical Model for Pantograph-Catenary Interaction
,”
Math. Comput. Modell. Dyn. Syst.
,
22
(
5
), pp.
463
474
.
26.
Song
,
Y.
,
Liu
,
Z.
,
Ouyang
,
H.
,
Wang
,
H.
, and
Lu
,
X.
,
2017
, “
Sliding Mode Control With PD Sliding Surface for High-Speed Railway Pantograph-Catenary Contact Force Under Strong Stochastic Wind Field
,”
Shock Vib.
,
2017
, p.
4895321
.https://doi.org/10.1155/2017/4895321
27.
Sanchez-Rebollo
,
C.
,
Jimenez-Octavio
,
J. R.
, and
Carnicero
,
A.
,
2013
, “
Active Control Strategy on a Catenary–Pantograph Validated Model
,”
Veh. Syst. Dyn.
,
51
(
4
), pp.
554
569
.
28.
Pappalardo
,
C. M.
,
Patel
,
M. D.
,
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2016
, “
Contact Force Control in Multibody Pantograph/Catenary Systems
,”
Proc. Inst. Mech. Eng., Part K
,
230
(
4
), pp.
307
328
.https://doi.org/10.1177/1464419315604756
29.
Song
,
Y.
,
Ouyang
,
H.
,
Liu
,
Z.
,
Mei
,
G.
,
Wang
,
H.
, and
Lu
,
X.
,
2017
, “
Active Control of Contact Force for High-Speed Railway Pantograph-Catenary Based on Multi-Body Pantograph Model
,”
Mech. Mach. Theory
,
115
, pp.
35
39
.
30.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Rauter
,
F.
,
Collina
,
A.
, and
Facchinetti
,
A.
,
2009
, “
Influence of the Aerodynamic Forces on the Pantograph–Catenary System for High-Speed Trains
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1327
1347
.
31.
Song
,
Y.
,
Liu
,
Z.
,
Wang
,
H.
,
Lu
,
X.
, and
Zhang
,
J.
,
2016
, “
Nonlinear Analysis of Wind-Induced Vibration of High-Speed Railway Catenary and Its Influence on Pantograph–Catenary Interaction
,”
Veh. Syst. Dyn.
,
54
(
6
), pp.
723
747
.
32.
Di Paola
,
M.
,
1998
, “
Digital Simulation of Wind Field Velocity
,”
J. Wind Eng. Ind. Aerodyn.
,
74–76
, pp.
91
109
.
33.
Yang
,
W.
,
Chang
,
T.
, and
Chang
,
C.
,
1997
, “
An Efficient Wind Field Simulation Technique for Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
697
708
.https://doi.org/10.1016/S0167-6105(97)00111-6
34.
Kaimal
,
J. C.
,
1978
, “
Horizontal Velocity Spectra in an Unstable Surface Layer
,”
J. Atmos. Sci.
,
35
(
1
), pp.
18
24
.
35.
Panofsky
,
H. A.
, and
McCormick
,
R. A.
,
1960
, “
The Spectrum of Vertical Velocity Near the Surface
,”
Q. J. R. Meteorol. Soc.
,
86
(
370
), pp.
495
503
.
36.
Tieleman
,
H. W.
,
1995
, “
Universality of Velocity Spectra
,”
J. Wind Eng. Ind. Aerodyn.
,
56
(
1
), pp.
55
69
.
37.
Bruni
,
S.
,
Ambrósio
,
J.
,
Carnicero
,
A.
,
Cho
,
Y.
,
Finner
,
L.
,
Ikeda
,
M.
,
Kwon
,
S.
,
Massat
,
J.
,
Stichel
,
S.
,
Tur
,
M.
, and
Zhang
,
W.
,
2015
, “
The Results of the Pantograph–Catenary Interaction Benchmark
,”
Veh. Syst. Dyn.
,
53
(
3
), pp.
412
435
.
38.
Reichmann
,
Th.
,
2006
, “
Dynamic Performance of Pantograph/Overhead Line Interaction for 4 Span Overlaps—TPS/OCS Portion
,”
SIEMENS
, pp.
4
21
.
39.
Chen
,
P.
,
Pedersen
,
T.
,
Bak-Jensen
,
B.
, and
Chen
,
Z.
,
2010
, “
ARIMA-Based Time Series Model of Stochastic Wind Power Generation
,”
IEEE Trans. Power Syst.
,
25
(
2
), pp.
667
676
.
40.
Iannuzzi
,
A.
, and
Spinelli
,
P.
,
1987
, “
Artificial Wind Generation and Structural Response
,”
J. Struct. Eng.
,
113
(
12
), pp.
2382
2398
.
You do not currently have access to this content.