Inverse patch transfer functions (iPTF) method has been developed to reconstruct the sound field of irregularly shaped sources in a noisy environment. The iPTF method, which uses classic regularization methods to solve the ill-posed problems generally, would incur some sidelobes ghosting in the process of identifying sparse sources. In view of the fact that the algorithm in wideband holography (WBH) can promote sparsity of results, a technique combining iPTF method with WBH algorithm is proposed to identify sparsely distributed sources in the present work. In the proposed technique, double layer pressure measurements are used to replace the measurements of the pressure and normal velocity which uses costly p-u probes. A gradient descent algorithm and a filtering process are applied to solve the minimization problem of identifying the normal velocities of target sources, which can suppress ghosting sources rapidly by an iterative process. In simulations, the field reconstruction results of two antiphase square piston sources show good sparsity and accuracy by employing the technique, nearly without ghosting sources. At different distances and frequencies of the two sources, the technique still performs well. Experimental validations at 200 Hz and 400 Hz are carried out in the end. The results of experiments are also coinciding with those of simulations.

References

References
1.
Maynard
,
J. D.
,
Williams
,
E. G.
, and
Lee
,
Y.
,
1985
, “
Nearfield Acoustic Holography: I. Theory of Generalized Holography and the Development of NAH
,”
J. Acoust. Soc. Am.
,
78
(
4
), pp.
1395
1413
.
2.
Veronesi
,
W. A.
, and
Maynard
,
J. D.
,
1987
, “
Nearfield Acoustic Holography (NAH) II. Holographic Reconstruction Algorithms and Computer Implementation
,”
J. Acoust. Soc. Am.
,
81
(
5
), pp.
1307
1322
.
3.
Bai
,
M. R.
,
1992
, “
Application of BEM (Boundary Element Method)-Based Acoustic Holography to Radiation Analysis of Sound Sources With Arbitrarily Shaped Geometries
,”
J. Acoust. Soc. Am.
,
92
(
1
), pp.
533
549
.
4.
Schuhmacher
,
A.
,
Hald
,
J.
,
Rasmussen
,
K. B.
, and
Hansen
,
P. C.
,
2003
, “
Sound Source Reconstruction Using Inverse Boundary Element Calculations
,”
J. Acoust. Soc. Am.
,
113
(
1
), pp.
114
127
.
5.
Bi
,
C. X.
,
2005
, “
Nearfield Acoustic Holography Based on the Equivalent Source Method
,”
Sci. China, Ser. E: Eng. Mater. Sci.
,
48
(
3
), pp.
338
353
.
6.
Chu
,
Z.
,
Ping
,
G.
,
Cai
,
P.
,
Yang
,
Y.
, and
Chen
,
C.
,
2015
, “
Application of Bayesian Regularization Criterion in Near Field Acoustic Holography Based on Equivalent Source Method
,”
Noise Vib. Worldwide
,
46
(
6
), pp.
20
28
.
7.
Hald
,
J.
,
2009
, “
Basic Theory and Properties of Statistically Optimized Near-Field Acoustical Holography
,”
J. Acoust. Soc. Am.
,
125
(
4
), pp.
2105
2120
.
8.
Jacobsen
,
F.
, and
Jaud
,
V.
,
2007
, “
Statistically Optimized Near Field Acoustic Holography Using an Array of Pressure–Velocity Probes
,”
J. Acoust. Soc. Am.
,
121
(
3
), pp.
1550
1560
.
9.
Jacobsen
,
F.
,
Chen
,
X.
, and
Jaud
,
V.
,
2008
, “
A Comparison of Statistically Optimized Near Field Acoustic Holography Using Single Layer Pressure–Velocity Measurements and Using Double Layer Pressure Measurements
,”
J. Acoust. Soc. Am.
,
123
(
4
), pp.
1842
1845
.
10.
Hald
,
J.
,
2016
, “
Fast Wideband Acoustical Holography
,”
J. Acoust. Soc. Am.
,
139
(
4
), pp.
1508
1518
.
11.
Hald
,
J.
,
2014
, “
Wideband Acoustical Holography
,”
43rd International Congress on Noise Control Engineering
, Melbourne, Australia, Nov. 16–19, Paper No.
44
.http://www.sandv.com/downloads/1604gade.pdf
12.
Aucejo
,
M.
,
Totaro
,
N.
, and
Guyader
,
J. L.
,
2010
, “
Identification of Source Velocities on 3D Structures in Non-Anechoic Environments: Theoretical Background and Experimental Validation of the Inverse Patch Transfer Functions Method
,”
J. Sound Vib.
,
329
(
18
), pp.
3691
3708
.
13.
Xiang
,
S.
,
Jiang
,
W.
, and
Pan
,
S.
,
2015
, “
Sound Source Identification in a Noisy Environment Based on Inverse Patch Transfer Functions With Evanescent Green's Functions
,”
J. Sound Vib.
,
359
, pp.
68
83
.
14.
Totaro
,
N.
,
Vigoureux
,
D.
,
Leclère
,
Q.
,
Lagneaux
,
J.
, and
Guyader
,
J. L.
,
2015
, “
Sound Fields Separation and Reconstruction of Irregularly Shaped Sources
,”
J. Sound Vib.
,
336
, pp.
62
81
.
15.
Totaro
,
N.
, and
Guyader
,
J. L.
,
2012
, “
Efficient Positioning of Absorbing Material in Complex Systems by Using the Patch Transfer Function Method
,”
J. Sound Vib.
,
331
(
13
), pp.
3130
3143
.
16.
Vigoureux
,
D.
,
Totaro
,
N.
,
Lagneaux
,
J.
, and
Guyader
,
J.-L.
,
2014
, “
Inverse Patch Transfer Functions Method as a Tool for Source Field Identification
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021006
.
17.
Totaro
,
N.
,
Forget
,
S.
, and
Guyader
,
J. L.
,
2015
, “
iPTF Methods: How Green's Identity and FEM Solver Can Be Used for Acoustic Inverse Methods
,” Tenth European Congress and Exposition on Noise Control Engineering (
EuroNoise
), Maastricht, The Netherlands, June 1–3, pp.
903
908
.https://hal.archives-ouvertes.fr/hal-01282531/document
18.
Forget
,
S.
,
Totaro
,
N.
,
Guyader
,
J. L.
, and
Schaeffer
,
M.
,
2016
, “
Source Fields Reconstruction With 3D Mapping by Means of the Virtual Acoustic Volume Concept
,”
J. Sound Vib.
,
381
, pp.
48
64
.
19.
Forget
,
S.
,
Totaro
,
N.
,
Guyader
,
J. L.
, and
Schaeffer
,
M.
,
2016
, “
A Noise Source Identification Method as an Analysis Support Technique to Improve NVH Performances of 3D Structures
,”
SAE
Paper No. 2016-01-1793.
20.
Aucejo
,
M.
,
Totaro
,
N.
, and
Guyader
,
J. L.
,
2008
, “
Identification of Source Velocities With Inverse Patch Transfer Functions Method
,”
J. Acoust. Soc. Am.
,
123
(
5
), p.
3310
.
21.
Kinsler
,
L. E.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
1999
,
Fundamentals of Acoustics
,
4th ed.
,
Wiley
,
New York
.
22.
Jacobsen
,
F.
, and
Jaud
,
V.
,
2006
, “
A Note on the Calibration of Pressure–Velocity Sound Intensity Probes
,”
J. Acoust. Soc. Am.
,
120
(
2
), pp.
830
837
.
23.
Cheng
,
M. T.
,
Mann
,
J. A.
, and
Pate
,
A.
,
1996
, “
Sensitivity of the Wave-Number Domain Field Separation Methods for Scattering
,”
J. Acoust. Soc. Am.
,
99
(
6
), pp.
3550
3557
.
24.
Nelson
,
P. A.
, and
Yoon
,
S. H.
,
2000
, “
Estimation of Acoustic Source Strength by Inverse Methods: Part I, Conditioning of the Inverse Problem
,”
J. Sound Vib.
,
233
(
4
), pp.
639
664
.
25.
Yoon
,
S. H.
, and
Nelson
,
P. A.
,
2000
, “
Estimation of Acoustic Source Strength by Inverse Methods: Part II, Experimental Investigation of Methods for Choosing Regularization Parameters
,”
J. Sound Vib.
,
233
(
4
), pp.
665
701
.
26.
Ouisse
,
M.
,
Maxit
,
L.
,
Cacciolati
,
C.
, and
Guyader
,
J. L.
,
2005
, “
Patch Transfer Functions as a Tool to Couple Linear Acoustic Problems
,”
ASME J. Vib. Acoust.
,
127
(
5
), pp.
458
466
.
27.
Allemang
,
R.
,
2003
, “
The Modal Assurance Criterion Twenty Years of Use and Abuse
,”
J. Sound Vib.
,
37
(
8
), pp.
14
23
.http://www.sandv.com/downloads/0308alle.pdf
You do not currently have access to this content.